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Introduction Mechanism of Action

Mechanism of Action

An essential concept in drug discovery:
m Drugs are designed to produce therapeutic effects.
m At cellular level, drugs (compounds) interact with their target cells.
m Biochemical interactions can be categorised into distinct classes.

These classes are called Mechanism of Action (MoA).

A general question: Given a compound, how do we know its MoA?
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[LVciladl Ml Fluorescence cell painting

Fluorescence cell painting

Fluorescence cell painting, a major approach for MoA identification:
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4 Emisions

m Fluorescence image X: H x W X #excitations.
m MoA Y: Categorical variable.

m Model: An end-to-end neural network for classification fy: X — Y.
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Introduction Federated learning

Federated learning

Performant neural network models rely on
sufficient data, but

m Data collecting is costly.

m Data sharing is not possible across
pharm entities.

We need collaborative machine learning
without sharing the data.

Federated learning (FL), a collaborative
machine learning paradigm, without data
sharing.
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Challenges Problem solved?

Problem solved?

Federated learning is not an on-the-shelf
method:

0, = aggregate( {9k}{{)

m Local training: Choices of
hyperparameters, optimisers, etc.

m Server aggregation: Model averaging
or medianing, momentum for
aggregation, etc.
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m Local datasets: Size imbalance,
statistical heterogeneity, etc. 0, = train(0,, D1) 0, = train(6,, D) Ok — train(d,, Dx
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B e e
Data heterogeneity problem in FL

Data heterogeneity is the root of all evil for federated learning:
m Slow convergence.
Suboptimal solutions.

|
m Fairness problem: across clients, and across classes.
|

In this work, we study the effectiveness of federated learning, and how data
heterogeneity affects the performance, in the context of compound MoA prediction
from fluorescence image-data.
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R e
Data & partitioning scheme

Partitions Datasets
MoA Encodi Num. |
o. ncoding um. Images 20% ~ pi(,y) Test Test
retinoid receptor agonist 0 1026
protein synthesis inhibitor 1 1242
topoisomerase inhibitor 2 1728 . % ~ x Public Public .
Aurora kinase inhibitor 3 1080 P Pp( 7y) Part.0 | Client 0
ATPase inhibitor 4 1026
HSP inhibitor 5 1296
HDAC inhibitor 6 1782 0% ~ po(z,y) | Part.0 ) )
JAK inhibitor 7 1188 Public [p, 1 | Client 1
PARP inhibitor 8 1134
tubulin polymerization inhibitor 9 1080 1% pl(z,y) LA
rg% ~ pk(z,y) |PartK Public | Part.K | Client K
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Simulation scenarios

We simulate three scenarios:

m Uniform

m Unbalanced (in sizes)

m Non-IID (specialisation in

certain MoAs)
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Training system

UPPMAX
m Base models: AlexNet, (ngsala)
VGG13. @— Client 0

m Training schemes: Local @— Client 1

traning, centralised tranining,

federated training.

m Federated training: FEDn for = clienx
geographically distributed @_ —
training, and local simulation. —

(Gothenburg)
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Experiment results FL outperforms local learning and is comparable to centralised learning

FL outperforms local learning and is comparable to centralised learning

Unbalanced: Test Accuracy

In terms of average prediction accuracy for Y T
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Experiment results The more participants, the better prediction performance

The more participants, the better prediction performance

Uniform Scenario

Under the condition that all local datasets
are of the identical distributions, the more
participants, the better prediction

performance, despite the various sizes of o BN BN BN
local datasets. O e

Unbalanced Scenario

i B
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This encourages existing participants to o /,/1'
keep engaging in FL throughout the life s Ju——g '
cycle of a model. g /
» 2 3 4 5 6
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ST T A B
Specialised participant brings benefits

We compare the
performance of the
federated models with the
specialised client included
and excluded.
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Experiment results Specialised participant brings benefits

Specialised participant brings benefits

Including the specialising client in federated
learning
m significantly improve the prediction accuracy
for the specialised MoA.
m slightly improve the average prediction
accuracy for all MoAs.

This encourages both specialised and general clients
to join federated learning.
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Conclusions

Conclusions

We conclude that
m Federated learning does bring benefits for MoA prediction from distributed data
without sharing them.
m Our studies provide motivations for different (potential) participants.
m Theoretical studies for data heterogeneity are too pessimistic in the context of
MoA prediction.
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Conclusions

Thanks for your attention!

Questions?
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