Definitions

Shannon Entropy: H(p) = — [ p(z lnp )dx

Cross Entropy: H( p, = —fp lnq

Kullback-Leibler Dlvergence KL(pllq) = f p(z) In %dw
= KL(p(X,Y) Hp( )p(Y))

Mutual Information: I(X,Y) =
W) exp (352, G(O)Ti(2)) C(0) =

Exponential Family: p(z|0) =
h(z)exp (n"T(z) — ¥(n)), where = (() are called the natural pa-

rameters.

Choice of Priors

Subjective Priors

Conjugate Priors: If P is in exponential family in the 2nd form in
Section Definitions, the conjugate family over ©, parameterised by p
and ), is then

F = {m(0l, N} x exp (¢(0) = ANW(C(0)) 5 p € RE A€ R,
For m = 7(0|po, Ao), the posterior is 7(0|uo + T'(z), Ao + 1).

Non-Informative Priors

e Laplace Priors: 7(f) o< const. Maximising Shannon entropy
H(m) =37 m(60:;) Inm(0;).

o Jeffreys Priors: 7(0) o +/det(1(6)), 1(0) = fIEpmg)alnip(zm
Derived from parameterisation invariant metric

L(p(-|01), p(-|02)) == KL(p(-101), p(-102)) + KL(p(:|02), p(:|61)) =
(61 — 02) T1(0)(61 — 62).

) Reference Priors: Information gain is I(P,w) =
J p(z)KL(7(-|z)||7(-))dz, 7average” gain over all data
space X By rewriting it as I(P,n) = H(w) — [p(z)H(-|z)dz,

we want more information in posterior and less in prior.

an

Decision Theory

In additional to Bayes model, we have

e Decision (space): d € D. e.g. D = O for parameter inference,
D = X for prediction, or D = {0,1} for testing, etc.

e Decision Rule: §: z € X — d = §(z) € D.

e Loss Function: L: (6,d) € © x D — L(6,d) € R. Here 0 is the
true parameter.

Expectations of Loss
e Risk: R(6,9)
e Bayes Risk r(m, J)

= [ L(0,6(z))p(z|0)dz

= [ R(6,6)m(0)d0 (further integrated over m)

e Posterior Integrated Loss p(m,d|z) == [ L(0,d)w(0|z)dd

Decision Rules

e Inadmissible decision rule §: There exists another rule which is
no worse than ¢ for all § € ©, and is strictly better than § for
at least one 6 € ©, measured by risk. (Need to be compared for
every 0.)

e Bayesian decision rule 6™: 6" that minimises the expected risk
0" = argmin r(r,d). (For each x € X we can find the decision
5

d € D using 6™ (z) = arg minp(w, d|z)).
d
e Minimax decision rule §*: ¢* that minimises the maximum risk

for @ € ©, where §* is searched within the expanded randomised
decision rule space.

Bridges between Frequentist and Bayesian

e Bayes estimators are admissible under (reasonable) conditions:
1. 7 does not exclude any 6; 2. r(d,7) for all § are bounded; 3.
R(6,6) is continuous for 6 € ©.

e Bayes estimator associated with the least favourable prior mo,
which is defined by sup r(7) = r(m), is a minimax estimator.

e If Bayes rule 0" has a constant risk R(0,0") = const., §" is

minimax.

Asymptotic Theory

Strong Consistency Assume a Bayes model {P,r} and random
variable X,, ~ Pg . The sequence of posteriors n"(6|x,) is called
strongly consistent at 6y iff for any open subset O C © with 6y € O it
holds that Pr" (0 € Olzn) — 1 as n — oco. (Alternatively we can show
this by proving E(0|z,) = 6y and V(f|z,,) = 0 as n — o0)

Asymptotic Behaviours of Consistent Priors Assume X, ~ P

and two priors m; and 72 w.r.t model P which both have strongly

consistent posteriors, then sup |Prj! (A|zn) — Pri2 (Alz,)| — 0forn —
A

o0. a.s. Then sup term is called total distribution distance. (Priors
with consistent posteriors have identical asymptotic behaviours.)

Bayesian Linear Model

Model of the form P = {N,,(X3,0°%): B € R?, 0% € RT} where X is a
matrix of known constants and ¥ is known. Parameters are 6 = {3, 0%}
or § = B with ¢ known. Also, X is of full rank: (X) = p.

Conjugate Prior .

Case 1: § = 8 with ¢ known.
Formulation: y|0 ~ Nn(XS,%), 8 ~ Np(7,T)

Results:
8 v r rx’
(y) Tt (<X7> ’ (xr b +XFXT))
y ~ Na(py, Zy)
Bly ~ Nop(usiy, Zply)

where

py = Xy pply =7 +TXT(S+XIX") ™ (y - Xv)

Yy, =S+ XIX' ¥4, =T-TX'(Z+XIX") 'XT.

Case 2: 0 = {8,0°}
Formulation:
o’ ~IG(a/2,b/2)
Blo® ~ Ny(y,0°T)
yIB,0* ~ Nu(XB,0°%)
where ZG(a/2,b/2) denotes inverse gamma distribution with parame-

ters a/2 and b/2. The prior of § = (3,0%)"
NZG(a,b,~,T).

is normal-inverse gamma

Results:

Joint posterior: (B,0%)ly ~ NZG(a1,b1,v1,T'1) where

by=b+(y— X)) (Z+XIrx")™*
Y =7+TX (Z+XTX ")y — Xn)
I =l-TI'X'(Z4XIX")"'XT.

@ =atn (y— X7)

Marginal posterior: For m(B]y) or w(c%|y), use properties of normal-
inverse gamma distribution on the joint posterior as below.
Normal-Inverse Gamma Property: Assume (83,0°) ~ NZG(a,b,v,T),
we have 8 ~ t,(a,v,bI'/a) and o> ~ ZG(a/2,b/2), where t, denotes
student-t distribution with degree of freedom p.

Joint y and o?: (y,0%)" ~ NZIG(a,b,m,M) where m = X~y and
M=3Y+XIX".



Jeffreys Prior 7;
We consider 0 = {3, 0?}.

Derivation: ot
1(6) = (ﬁx 02 x 0 )

20%
7(0) o< 1/(0?)P/**! if we assume f and o2 are dependent.
w(0) o 1/0? if B and o? are independent 7(8,0?%) = w(B)n(c?).
Posterior: The posterior for Jeffreys Prior falls back to the conjugate
family:
Under Jeffreys priors (8, 0%) oc (62)™™ with 2m =p+2orm =1
assuming dependency between 3 and o2 or not. The posterior is then
(/87 U2)|y ~ NIQ(QWH ba 77 F) Wlth
am =2m+n—p—2

b=(y—Xps) 57 (y - Xpx)

y=(X"27'X)'X "2y = By (Estimation of 3)

r=xX'2'x)™"

Additionally, if ¥ =1, 52 is identical to the least-square solution.

Parameter Estimation

Maximum Likelihood Estimator (MLE): Oy (z) = arg max/(6]x).
9€O

Maximum a Posteriori (MAP) Estimator
Opiap = arg maxm(0|x)
6co
e Make estimation with the mode of the posterior

e Enough to know the kernel only 7(0|x) o< 7(6)¢(0|x)

Connections between MAP and MLE For a linear model

y = XB + € with parameter § = 8 € R”, by rearranging Omapr =

argmax [In£(0|x) + In7(0)], we have Omap is equivalent to the reg-
0co

ularised MLE: In7(¢) = Pen(0) + const.. If m(0) is flat/constant,
Omap = OMLE-

Bayes Rules Estimator
e 012 = E,(gj2)0: Minimise Lo loss.
° éLl = Median,(g|,)(): Minimise L; loss.

For symmetric single mode posterior, éLg = éLl.

Credible Sets

Plays the similar rule as the confidence interval, to quantify the preci-
sion of the estimation.

e A set C; is an a-credible region iff Pr(6y € Czlz) > 1 — o, €
[0,1].

e The region is Highest Posterior Density a-credible region iff if
can be written as {6: w(0|z) > ko} C Cr C {0: w(0|z) > ka}
where kq is the largest bound. (Intuitively, HPD: The a—credible
region with the shortest interval)

Predictions

We assume a Bayes model {P, 7} which has the posterior w(6|z).The
future data x; is generated by distribution Q)¢ with probability func-
tion gq(z¢|0,z). Note generally q(zf|0,x) = q(zf|0) unless it is auto-
regressive, future data depending on history data.

1. Define the prediction error Lyeda(zy,d) for a pair of future data
point zy and prediction/decision d. Note: It is not the loss
function.

2. Loss function is given by L(6,d) = [ Lprea(zs,d)q(zy|0, z)dzy.

3. We get standard risk R(0,¢), Bayes risk r(d, 7), integrated poste-
rior loss p(d, w|z).

4. By minimising Bayes risk we obtain the Bayes predictor, which
can be practically obtained from the integrated posterior loss.

Interestingly, we have
plasrlo) = [[ Lpwaes dyatasl6, o)n(0)e)dod,

/Lpred(xfyd) /q(:l,’fw,l’)ﬂ'(@‘i‘)de dl’f

predictive distribution 7 (z ¢|z)

(1)
()

e Predictive distribution 7(zs|x) is the main tool for predictions:
Point estimation and prediction region (similar to HPD credible
region) are both base on 7(zs|z).

e Similarly, using L error for Lpr.q we have Medianﬁ(lf\z)(xf) as
the bayes estimator, and using L2 error leads to Eﬂ(zf‘m>:cf.

Model Testing

Combine two models together with the indicator parameter k. Consider
Bayes models P; = {Pj (z): 6; € ©;} with prior m; for i € {0,1}. The
common model is Pr, = {(1 — k) Py, (z) + kPj, (z): Om = (k,00,01) €
{0} x B x DU {1} x O x ©1} with mixed prior mm (0m) = m(k =
0)mo(0o) + (1 — mi(k = 1))m1(01).

Interested in k, we have the posterior Pr(k =
Pr(k:O)pF();ﬁI;;z)))lik(;;(llliz))p(z\k:l) for ¢ € {0,1}. Essentially we are in-
terested in the evidence of each model p(z|k = 1) = [ £(0:|z)m:(0:)db;
for ¢ € {0,1}. We call the ratio of the evidences *Bayes Factor*

p(zlk = 0)/p(x|k = 1).

ilz) =

Lazy Mathematicians’ Methods

All you need is posterior.

Integration

Independent Monte Carlo Integration To integrate E,gym(6) =
[ m(@)p(6)de.
1. Draw samples from p(6) as {01, ..
2. IE“17(9)771(9) =3 Zf\;1 m(6:).

. ,G(N)}4

Sampling
We want to sample p(6) with only access to its kernel p(6) « k(6).

Importance Sampling Rewrite the integration p(f) =
Normalise(g(0) % ).
1. Sample form ¢(6) as {61,...,0n}.
2. Calculate associated importance weights w; = SEZ:; for ¢ € [N].
3. Standardise the importance weights w; = %

4. Obtain weighted samples with weights: {(60;, w$)}X;.

With weighted samples, one can

e integrate [m(0)p(d) =~ SN, m(6;)w;.

e resample from {6;}; with corresponding probabilities {w{}¥,,
resulting unweighted samples from p(0) directly as {vi,...,var}.
Note: Brute-force is a special case of importance sampling, with
g(0) x const..
Rejection Algorithm
1. For g(6), pick a constant M s.t. Mg(#) > k(8) for all § € ©.

2. Sample from g(0) as {61,...,0n}.

3. Accept 6; with probability Pr;(accept) = A’;ég(ig)i).
MCMC (Metropolis-Hastings) For ¢ € [N]:

1. Draw v from T'(0;1116;).

2. Compute acceptance criteria (v, ;) = %,

3. 6;+1 = v with Pr;(accept) = r(v, 0;).
Approximate Bayesian Computation (ABC) Not even kernel!
We can only generate data from p(z|@) for 6 € ©.

1. Generate 0 from 7w and generate Tnew-

2. Accept it if d(S(Znew), S(x)) is small enough, where S(-) denotes
sufficient statistics and d denotes a metric.



