
Definitions

Shannon Entropy: H(p) = −
∫
p(x) ln p(x)dx

Cross Entropy: H(p, q) = −
∫
p(x) ln q(x)

Kullback-Leibler Divergence: KL(p∥q) =
∫
p(x) ln p(x)

q(x)
dx

Mutual Information: I(X,Y ) = KL(p(X,Y )∥p(X)p(Y ))

Exponential Family: p(x|θ) = h(x) exp
(∑k

j=1 ζj(θ)Tj(x)
)
C(θ) =

h(x) exp
(
η⊤T (x)−Ψ(η)

)
, where η = ζ(θ) are called the natural pa-

rameters.

Choice of Priors

Subjective Priors

Conjugate Priors: If P is in exponential family in the 2nd form in
Section Definitions, the conjugate family over Θ, parameterised by µ
and λ, is then

F = {π(θ|µ, λ)} ∝ exp
(
ζ(θ)⊤µ− λΨ(ζ(θ))

)
: µ ∈ Rk, λ ∈ R+.

For π = π(θ|µ0, λ0), the posterior is π(θ|µ0 + T (x), λ0 + 1).

Non-Informative Priors

• Laplace Priors: π(θ) ∝ const. Maximising Shannon entropy
H(π) =

∑n
i=1 π(θi) lnπ(θi).

• Jeffreys Priors: π(θ) ∝
√

det(I(θ)), I(θ) := −Ep(x|θ)
∂2 ln p(x|θ)

∂2θ
.

Derived from parameterisation invariant metric
I2(p(·|θ1), p(·|θ2)) := KL(p(·|θ1), p(·|θ2)) + KL(p(·|θ2), p(·|θ1)) ≈
(θ1 − θ2)

⊤I(θ)(θ1 − θ2).

• Reference Priors: Information gain is I(P, π) =∫
p(x)KL(π(·|x)∥π(·))dx, an ”average” gain over all data

space X . By rewriting it as I(P, π) = H(π) −
∫
p(x)H(·|x)dx,

we want more information in posterior and less in prior.

Decision Theory

In additional to Bayes model, we have

• Decision (space): d ∈ D. e.g. D = Θ for parameter inference,
D = X for prediction, or D = {0, 1} for testing, etc.

• Decision Rule: δ : x ∈ X → d = δ(x) ∈ D.

• Loss Function: L : (θ, d) ∈ Θ × D → L(θ, d) ∈ R. Here θ is the
true parameter.

Expectations of Loss

• Risk: R(θ, δ) :=
∫
L(θ, δ(x))p(x|θ)dx

• Bayes Risk r(π, δ) :=
∫
R(θ, δ)π(θ)dθ (further integrated over π)

• Posterior Integrated Loss ρ(π, d|x) :=
∫
L(θ, d)π(θ|x)dθ

Decision Rules

• Inadmissible decision rule δ: There exists another rule which is
no worse than δ for all θ ∈ Θ, and is strictly better than δ for
at least one θ ∈ Θ, measured by risk. (Need to be compared for
every θ.)

• Bayesian decision rule δπ: δπ that minimises the expected risk
δπ := argmin

δ
r(π, δ). (For each x ∈ X we can find the decision

d ∈ D using δπ(x) = argmin
d

ρ(π, d|x)).

• Minimax decision rule δ⋆: δ⋆ that minimises the maximum risk
for θ ∈ Θ, where δ⋆ is searched within the expanded randomised
decision rule space.

Bridges between Frequentist and Bayesian

• Bayes estimators are admissible under (reasonable) conditions:
1. π does not exclude any θ; 2. r(δ, π) for all δ are bounded; 3.
R(θ, δ) is continuous for θ ∈ Θ.

• Bayes estimator associated with the least favourable prior π0,
which is defined by sup

π
r(π) = r(π0), is a minimax estimator.

• If Bayes rule δπ has a constant risk R(θ, δπ) = const., δπ is
minimax.

Asymptotic Theory

Strong Consistency Assume a Bayes model {P, π} and random
variable Xn ∼ Pn

θ0
. The sequence of posteriors πn(θ|xn) is called

strongly consistent at θ0 iff for any open subset O ⊂ Θ with θ0 ∈ O it
holds that Prn(θ ∈ O|xn) → 1 as n → ∞. (Alternatively we can show
this by proving E(θ|xn) = θ0 and V(θ|xn) = 0 as n → ∞)

Asymptotic Behaviours of Consistent Priors Assume Xn ∼ Pn
θ0

and two priors π1 and π2 w.r.t model P which both have strongly
consistent posteriors, then sup

A
|Prπ1

n (A|xn)− Prπ2
n (A|xn)| → 0 for n →

∞. a.s. Then sup term is called total distribution distance. (Priors
with consistent posteriors have identical asymptotic behaviours.)

Bayesian Linear Model

Model of the form P = {Nn(Xβ, σ2Σ): β ∈ Rp, σ2 ∈ R+} where X is a
matrix of known constants and Σ is known. Parameters are θ = {β, σ2}
or θ = β with σ2 known. Also, X is of full rank: r(X) = p.

Conjugate Prior πc

Case 1: θ = β with σ2 known.
Formulation: y|θ ∼ Nn(Xβ,Σ), β ∼ Np(γ,Γ)
Results: (

β
y

)
∼ Nn+p

((
γ
Xγ

)
,

(
Γ ΓX⊤

XΓ Σ +XΓX⊤

))
y ∼ Nn(µy,Σy)

β|y ∼ Np(µβ|y,Σβ|y)

where

µy = Xγ µβ|y = γ + ΓX⊤(Σ +XΓX⊤)−1(y −Xγ)

Σy = Σ+XΓX⊤ Σβ|y = Γ− ΓX⊤(Σ +XΓX⊤)−1XΓ.

Case 2: θ = {β, σ2}
Formulation:

σ2 ∼ IG(a/2, b/2)

β|σ2 ∼ Np(γ, σ
2Γ)

y|β, σ2 ∼ Nn(Xβ, σ2Σ)

where IG(a/2, b/2) denotes inverse gamma distribution with parame-
ters a/2 and b/2. The prior of θ = (β, σ2)⊤ is normal-inverse gamma
NIG(a, b, γ,Γ).

Results:
Joint posterior: (β, σ2)|y ∼ NIG(a1, b1, γ1,Γ1) where

a1 = a+ n b1 = b+ (y −Xγ)⊤(Σ +XΓX⊤)−1(y −Xγ)

γ1 = γ + ΓX⊤(Σ +XΓX⊤)−1(y −Xγ)

Γ1 = Γ− ΓX⊤(Σ +XΓX⊤)−1XΓ.

Marginal posterior: For π(β|y) or π(σ2|y), use properties of normal-
inverse gamma distribution on the joint posterior as below.
Normal-Inverse Gamma Property: Assume (β, σ2) ∼ NIG(a, b, γ,Γ),
we have β ∼ tp(a, γ, bΓ/a) and σ2 ∼ IG(a/2, b/2), where tp denotes
student-t distribution with degree of freedom p.
Joint y and σ2: (y, σ2)⊤ ∼ NIG(a, b,m,M) where m = Xγ and
M = Σ+XΓX⊤.

1



Jeffreys Prior πJ

We consider θ = {β, σ2}.
Derivation:

I(θ) =

(
1
σ2X

⊤Σ−1X 0
0 n

2σ4

)
π(θ) ∝ 1/(σ2)p/2+1 if we assume β and σ2 are dependent.
π(θ) ∝ 1/σ2 if β and σ2 are independent π(β, σ2) = π(β)π(σ2).
Posterior: The posterior for Jeffreys Prior falls back to the conjugate
family:
Under Jeffreys priors π(β, σ2) ∝ (σ2)−m with 2m = p + 2 or m = 1
assuming dependency between β and σ2 or not. The posterior is then
(β, σ2)|y ∼ NIG(am, b, γ,Γ) with

am = 2m+ n− p− 2

b = (y −Xβ̂Σ)
⊤Σ−1(y −Xβ̂Σ)

γ = (X⊤Σ−1X)−1X⊤Σ−1y = β̂Σ (Estimation of β)

Γ = (X⊤Σ−1X)−1

Additionally, if Σ = In, β̂Σ is identical to the least-square solution.

Parameter Estimation

Maximum Likelihood Estimator (MLE): θ̂MLE(x) = argmax
θ∈Θ

ℓ(θ|x).

Maximum a Posteriori (MAP) Estimator

θ̂MAP = argmax
θ∈Θ

π(θ|x)

• Make estimation with the mode of the posterior

• Enough to know the kernel only π(θ|x) ∝ π(θ)ℓ(θ|x)

Connections between MAP and MLE For a linear model
y = Xβ + ϵ with parameter θ = β ∈ Rp, by rearranging θ̂MAP =
argmax

θ∈Θ
[ln ℓ(θ|x) + lnπ(θ)], we have θ̂MAP is equivalent to the reg-

ularised MLE: lnπ(θ) = Pen(θ) + const.. If π(θ) is flat/constant,
θ̂MAP = θ̂MLE.

Bayes Rules Estimator

• θ̂L2 = Eπ(θ|x)θ: Minimise L2 loss.

• θ̂L1 = Medianπ(θ|x)(θ): Minimise L1 loss.

For symmetric single mode posterior, θ̂L2 = θ̂L1.

Credible Sets

Plays the similar rule as the confidence interval, to quantify the preci-
sion of the estimation.

• A set Cx is an α-credible region iff Pr(θ0 ∈ Cx|x) ≥ 1 − α, α ∈
[0, 1].

• The region is Highest Posterior Density α-credible region iff if
can be written as {θ : π(θ|x) > kα} ⊂ Cx ⊂ {θ : π(θ|x) ≥ kα}
where kα is the largest bound. (Intuitively, HPD: The α−credible
region with the shortest interval)

Predictions

We assume a Bayes model {P, π} which has the posterior π(θ|x).The
future data xf is generated by distribution Qθ with probability func-
tion q(xf |θ, x). Note generally q(xf |θ, x) = q(xf |θ) unless it is auto-
regressive, future data depending on history data.

1. Define the prediction error Lpred(xf , d) for a pair of future data
point xf and prediction/decision d. Note: It is not the loss
function.

2. Loss function is given by L(θ, d) =
∫
Lpred(xf , d)q(xf |θ, x)dxf .

3. We get standard risk R(θ, δ), Bayes risk r(δ, π), integrated poste-
rior loss ρ(d, π|x).

4. By minimising Bayes risk we obtain the Bayes predictor, which
can be practically obtained from the integrated posterior loss.

Interestingly, we have

ρ(d, π|x) =
∫∫

Lpred(xf , d)q(xf |θ, x)π(θ|x)dθdxf (1)∫
Lpred(xf , d)

∫
q(xf |θ, x)π(θ|x)dθ︸ ︷︷ ︸

predictive distribution π(xf |x)

dxf (2)

• Predictive distribution π(xf |x) is the main tool for predictions:
Point estimation and prediction region (similar to HPD credible
region) are both base on π(xf |x).

• Similarly, using L1 error for Lpred we have Medianπ(xf |x)(xf ) as
the bayes estimator, and using L2 error leads to Eπ(xf |x)xf .

Model Testing

Combine two models together with the indicator parameter k. Consider
Bayes models Pi = {P i

θi
(x) : θi ∈ Θi} with prior πi for i ∈ {0, 1}. The

common model is Pm = {(1− k)P 0
θ0
(x) + kP 1

θ1
(x) : θm := (k, θ0, θ1) ∈

{0} × Θ0 × ∅ ∪ {1} × ∅ × Θ1} with mixed prior πm(θm) = πk(k =
0)π0(θ0) + (1− πk(k = 1))π1(θ1).
Interested in k, we have the posterior Pr(k = i|x) =

Pr(k=i)p(x=i|k=)
Pr(k=0)p(x|k=0)+Pr(k=1)p(x|k=1)

for i ∈ {0, 1}. Essentially we are in-

terested in the evidence of each model p(x|k = i) =
∫
ℓ(θi|x)πi(θi)dθi

for i ∈ {0, 1}. We call the ratio of the evidences *Bayes Factor*
p(x|k = 0)/p(x|k = 1).

Lazy Mathematicians’ Methods

All you need is posterior.

Integration

Independent Monte Carlo Integration To integrate Ep(θ)m(θ) =∫
m(θ)p(θ)dθ.

1. Draw samples from p(θ) as {θ(1), . . . , θ(N)}.
2. Êp(θ)m(θ) = 1

N

∑N
i=1 m(θi).

Sampling

We want to sample p(θ) with only access to its kernel p(θ) ∝ k(θ).
Importance Sampling Rewrite the integration p(θ) =

Normalise(g(θ) k(θ)
g(θ)

).

1. Sample form g(θ) as {θ1, . . . , θN}.
2. Calculate associated importance weights wi =

k(θi)
g(θi)

for i ∈ [N ].

3. Standardise the importance weights ws
i = wi∑N

i=1 wi
.

4. Obtain weighted samples with weights: {(θi, ws
i )}Ni=1.

With weighted samples, one can

• integrate
∫
m(θ)p(θ) ≈

∑N
i=1 m(θi)w

s
i .

• resample from {θi}Ni=1 with corresponding probabilities {ws
i }Ni=1,

resulting unweighted samples from p(θ) directly as {νi, . . . , νM}.
Note: Brute-force is a special case of importance sampling, with
g(θ) ∝ const..
Rejection Algorithm

1. For g(θ), pick a constant M s.t. Mg(θ) ≥ k(θ) for all θ ∈ Θ.

2. Sample from g(θ) as {θ1, . . . , θN}.
3. Accept θi with probability Pri(accept) =

k(θi)
Mg(θi)

.

MCMC (Metropolis-Hastings) For i ∈ [N ]:

1. Draw ν from T (θi+1|θi).
2. Compute acceptance criteria r(ν, θi) =

k(ν)T (ν|θi)
k(θi)T (θi|ν)

.

3. θi+1 = ν with Pri(accept) = r(ν, θi).

Approximate Bayesian Computation (ABC) Not even kernel!
We can only generate data from p(x|θ) for θ ∈ Θ.

1. Generate θ from π and generate xnew.

2. Accept it if d(S(xnew), S(x)) is small enough, where S(·) denotes
sufficient statistics and d denotes a metric.
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