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Motivation of Bayesian neural network
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A general supervised learning problem is: Given a set of data D = {z,,, ¥, } how to predict the label g

of an unseen datum %?

Ideally, if we know p(y | ), then the prediction is simply given by § = argmax, p(y | Z). But the problem
is we do not know p(y | ). So we need to approximate p(y | =) using some function / distribution

approximators p(y | z, w), with known form parameterised by w.

Then all the problem is how to find the best w* such that p(y | z, w*) is as close to p(y | ) as possible.

Point estimate

The most straightforward approach is maximum likelihood estimate. The main idea is to find w such that

the likelihood of getting the entire dataset D is maximised:

N
w* = arg,, max Hp(yn | £, w) = arg,, max p(D | w).
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The problem is pretty obvious: Some w are just inherently not possible to be chosen (or in another words,
there are structures in the distribution of w). One example is: you are the boss, and you find that one of the
worker is not at work today (D). You want to find a reason (w) to explain it. The MLE gives that w is that

they died, since it maximises the likelihood that they cannot go to work.

Now we know that MLE is problematic since it does not consider any implicit structure of w. What if we

propose some prior structure for w as p(w), and use the following estimate for w*:

N
w* = arg, max | | p(w | @, yn) = arg, maxp(w | D) = arg,, maxp(D | w)p(w).
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Equivalence of MAP and regularisation.



Additional bayes estimator: w* = E,,p(w | D) minimises the L, loss, while w* = median,,(p(w | D)).
For the unseen datum Z, the prediction is given by § = arg, maxp(y | &, w*).

Here everything makes sense. But the only problem is, for arbitrary «, there is always a prediction given
but we have no idea how certain the prediction is. It would be good if we can get some sort of certainty
associated with the prediction so that we can decide whether we want to use this prediction depending on
the certainty.

From point estimate to posterior

The core of the problem is because that we focus on the point estimates of the parameter w. Alternatively,
we want to find the posterior distribution of w given observed data D, i.e. p(w | D). Then for a new data Z,

we can make much more predictions together with the certainty estimates.

But we only know the form of p(y | z, w) and p(w). In general, p(w | D) is intractable. However, we can
use probability measure g(w | 0) to approximate p(w | D). We want to find 8* such that g(w | 6*) and
p(w | D) are close enough. Wait when we say "close", we are implying a metric. Here we use the classic

KL divergence:

0" = argy.e min KL(g(w | 8)||p(w | D))
qw|0) | 0
= argpce min Ky (y|g) (
g(w | 9 q(w | 9)p(D)
(D | w)p(w)

= argyco min KL(q(w | 0)||p(w)) — Eq(wje) Inp(D | w) = R(0, D).

= argyco min Ky (y|g) [

Great! Now we know the prior p(w), the chosen g(w | #), and the likelihood p(D | w), we only need to

solve this optimisation problem!

Now we have our objective function, however, how to optimise it using, say, stochastic first-order methods?
We need essentially to solve two problems: 1. How to compute the gradient of the objective function. 2.
How to break the objective function into a finite-sum form so that we can use batches to optimise the

parameters.

The problem is how to compute gradient over the expectation, which contains the parameter 6 of interest.

Here is the trick. Let a random variable € ~ Q(€) have pdf g(e) and there exist a mapping w = t(e, 9).

Further we assume function ¢(+, ) is an one-to-one mapping from e to w, with the determinant of the



Jacobian to be one, i.e. |J(€)| = 1. Then we have g(w | 8)dw = g(¢€)de.
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Now our empiric risk function can be written as

R(0,D) = KL(q(w | )[lp(w)) — Equje) Inp(D | w)
= KL(g(w | 0)||p(w)) — / q(w | 0) In(D | w)dw

— KL(q(w | 0)[lp(w)) - / Inp(D | t(e, 0))q(e)de
— KL(g(w | 0)[[p(w)) — Eqo Inp(D | t(c, 60))

In case that the KL divergence is not analytical feasible, we can apply this trick on the KL term as well.

R(6,D) = KL(g(w | §)[lp(w)) — Eq(e) Inp(D | £(e, 6))
~ [atw ) LD By 1ap(D | c,0)
=Ky [ln % —Inp(D | t(e, 6))
So the risk function can be estimated by K-sample Monte Carlo method
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In deep learning, we do not use the full batch of data to compute the gradient and update the parameters but
relies on the batch-wise update. Thus, we need the loss function £(+) on each data point (z,, y,) so that the
risk function can be expressed in the form of finite sum over all data points and we can then use batch-wise

gradient descent.
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If we use 1-sample Monte Carlo method such that K = 1, we have the loss function as

1. q(t(e0) | 0)

g(wnayn;g) = Nln p(t(€7 0)) - lnp(yn | wnat(67 0))

Assume we have prior A (ug, I) and posterior N (u, (02) ' I), the KL term is given by
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Because of the independence of parameters, the KL terms for both W and b for different layers can be

summed up.

kl_w = 8.5 * (w_var.sum() + (self.W_mu self.prior_mu).pow(2).sum() \

w_var.log().sum() np.log(self.p jar) * self.W_mu.numel() self.W_mu.numel())

I think in my implementation, the term involving np.log(\cdot) should be either removed (so that we
stick to I as the prior), or the term || — o2 can be extended to support different prior by multiplying the
inverse of the prior covariance. But the experiments are done on I as prior anyway so it should not be a

problem for now?
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