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From Centralized Learning to Federated Learning Centralized Learning

Centralized Learning

Problem:
We have a dataset {(x;,y;)}/_;, we want to model the unknown
function y = g(x)

Neural Network:
A function approximator f : R” — RP parameterized by
W = {Ak, bi; k € [K]}:

f(x) =fgofk_1---0f
where fi = oy (Akx + by) for k € [K]
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From Centralized Learning to Federated Learning Centralized Learning
Centralized Learning

Target parameters W*:
With a defined loss function ¢, we use empirical risk minimization:

I

g 1 1

w* —argmlnz (xi: W), i)
=1

How to solve:
Generally first-order methods: (stochastic) gradient descent

Wt = witt —nvy
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From Centralized Learning to Federated Learning Distributed Learning vs Federated Learning

Distributed Learning vs Federated Learning

Distributed Learning:
Challenges:

m Large models

m Large amount of data
Solutions:

m Model parallelization

m Data parallelization
Distributed SGD:
o T

N

Wt =Wt -V
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Federated Learning:
Challenges:

m Ones from DL

m Intrinsic distributed data

m Security concern

m Prohibitive communication
cost

How to do federated
optimization?

Federated Learning October 11, 2025 5/14



Baseline Algorithm
Baseline Algorithm

Baseline algorithm: FedAvg?

Algorithm 1 FedAvg

Require: Initialize parameters W°
for round tin {1,...T} do
for client k in {1,...K} parallel do

lterate SGD for n steps: W/} = SGD(W*'1, n) > Client-side
(Af = W} - W)

end for B

W =3 k1 We/K

(Wt =Wt 45K AL/K) > Server-side

end for

In ideal cases, the communication cost is reduced to (9(%)

!McMahan et al. 2016.
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Federated Optimization Problem Generalized Framework

Generalized Framework

FedOpt from Adaptive Federated Optimization?:

ServerOpt
Algorithm 2 FedOpt GD, Nestrv. GD,
Adam, etc.
Require: Initialize parameters W°
for round t in {1,...T} do ClientOpt
for client k in {1,...K} parallel do SGD, Nestrv. SGD,
W := ClientOpt(W'1!) > Client-side  Adam. AdaGrad. etc.
AL = W — Wt
end for
Af = > Server-side  Averaging, Medianing,
Wt .= ServerOpt(Af) etc.
end for
FedAvg: SGD+ + GD withn = -1

2Reddi et al. 2020.

Li Ju (Uppsala University) Federated Learning October 11, 2025 7/14



Federated Optimization Problem Problems of Federated Optimization

Problems of Federated Optimization

There are still problems in federated optimization:

Statistical heterogeneity

Computational heterogeneity
Additional privacy constraints

Communication efficiency
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An Introduction to Our Work

Model Fairness

Case Study: Non-iid partitioned MNIST 4 Multi-Layer Perceptron

MNIST: Data Distribution
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Figure: Left: Distributions of local datasets Right: Training curves

Fairness problem: Differences of model performance across
participants in a federated training process.
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An Introduction to Our Work eI & {glTTatel}

Our Contribution

m Formulate fairness-controlled federated learning

m Provide the theoretical fairness guarantee for the solution of the
reformulated problem

m Analyse the convergence of Federated Adam

m Propose Adaptive Federated Adam to optimize the problem
with better convergence
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Analysis of FedAdam

Centralized Unbiased gradient Parameter
Training estimation update
Loss of Adam )
Convergence <
FL with IID  Accumulated Parameter
data SGD updates % ' update
Bi \ am wit] >
128 ~ Acc. updates
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FL with Pseudo- Parameter )
non-1ID data radient update
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Average of \1}'
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n Introduction to Our Work Convergence & Fairness

Convergence & Fairness

MNIST: Test Accurac

CIFAR10: Test Accuracy

SYNTHETIC: Test Accuracy
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Optimality & Robustness

Pareto Optimality

Pareto Front of the Synthetic setup
4.0 fedavg

w3.0 fedadam

Qgfedavg

Pareto Front of the Synthetic setup formed by AdaFedAdam with

different c.
Robustness against partial participation & arbitrary numbers of local

steps.
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AGR DAL T RO Optimality & Robustness

Thank you!

Questions?
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