Federated Learning

From the Perspective of Optimization

Li Ju

Uppsala University

October 11, 2025

Outline

- From Centralized Learning to Federated Learning
- Federated Optimization Problem
- 3 An Introduction to Our Work

Centralized Learning

Problem:

We have a dataset $\{(x_i, y_i)\}_{i=1}^{I}$, we want to model the unknown function y = g(x)

Neural Network:

A function approximator $f: \mathbb{R}^n \to \mathbb{R}^p$ parameterized by $W := \{A_k, b_k; k \in [K]\}$:

$$f(x) \coloneqq f_K \circ f_{K-1} \cdots \circ f_1$$

where $f_k = \sigma_k(A_k x + b_k)$ for $k \in [K]$

Centralized Learning

Target parameters W^* :

With a defined loss function ℓ , we use empirical risk minimization:

$$W^* := \arg\min_{W} \sum_{i=1}^{I} \frac{\ell(f(x_i; W), y_i)}{I}$$

How to solve:

Generally first-order methods: (stochastic) gradient descent

$$W^t := W^{t-1} - \eta \nabla_{W}$$

Distributed Learning vs Federated Learning

Distributed Learning:

Challenges:

- Large models
- Large amount of data

Solutions:

- Model parallelization
- Data parallelization

Distributed SGD:

$$\nabla_{W} = \frac{\sum_{n=1}^{N} \nabla_{W}^{n}}{N}$$

$$W^{t} := W^{t-1} - \eta \nabla_{W}$$

Federated Learning:

Challenges:

- Ones from DL
- Intrinsic distributed data
- Security concern
- Prohibitive communication cost

How to do federated optimization?

Baseline Algorithm

Baseline algorithm: FedAvg¹

Algorithm 1 FedAvg

In ideal cases, the communication cost is reduced to $\mathcal{O}(\frac{1}{n})$

¹McMahan et al. 2016.

Generalized Framework

FedOpt from Adaptive Federated Optimization²:

Algorithm 2 FedOpt

ServerOpt

GD, Nestrv. GD, Adam, etc.

ClientOpt

SGD, Nestrv. SGD, Adam, AdaGrad, etc.

Aggre

Averaging, Medianing, etc.

FedAvg: SGD + Averaging + GD with $\eta = -1$

²Reddi et al. 2020.

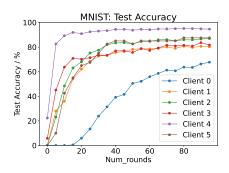
Problems of Federated Optimization

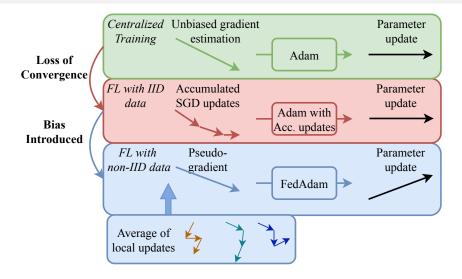
There are still problems in federated optimization:

- Statistical heterogeneity
- Computational heterogeneity
- Additional privacy constraints
- Communication efficiency
- · ...

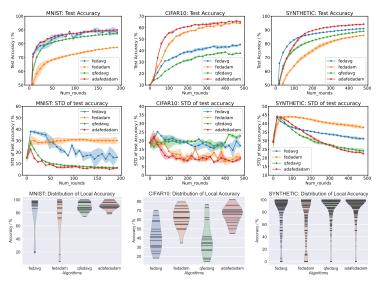
Model Fairness

Case Study: Non-iid partitioned MNIST + Multi-Layer Perceptron



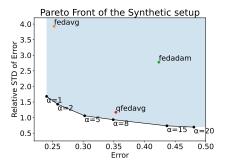

Figure: Left: Distributions of local datasets Right: Training curves

Fairness problem: Differences of model performance across participants in a federated training process.


Our Contribution

- Formulate fairness-controlled federated learning
- Provide the theoretical fairness guarantee for the solution of the reformulated problem
- Analyse the convergence of Federated Adam
- Propose Adaptive Federated Adam to optimize the problem with better convergence

Analysis of FedAdam



Convergence & Fairness

Optimality & Robustness

Pareto Optimality

Pareto Front of the Synthetic setup formed by AdaFedAdam with different α .

Robustness against partial participation & arbitrary numbers of local steps.

Thank you!

Questions?