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From Centralized Learning to Federated Learning Centralized Learning

Centralized Learning

Problem:
We have a dataset {(xi , yi )}Ii=1, we want to model the unknown
function y = g(x)

Neural Network:
A function approximator f : Rn → Rp parameterized by
W := {Ak , bk ; k ∈ [K ]}:

f (x) := fK ◦ fK−1 · · · ◦ f1
where fk = σk(Akx + bk) for k ∈ [K ]
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From Centralized Learning to Federated Learning Centralized Learning

Centralized Learning

Target parameters W ∗:
With a defined loss function ℓ, we use empirical risk minimization:

W ∗ := argmin
W

I∑
i=1

ℓ(f (xi ;W ), yi )

I

How to solve:
Generally first-order methods: (stochastic) gradient descent

W t := W t−1 − η∇W
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From Centralized Learning to Federated Learning Distributed Learning vs Federated Learning

Distributed Learning vs Federated Learning

Distributed Learning:
Challenges:

Large models

Large amount of data

Solutions:

Model parallelization

Data parallelization

Distributed SGD:

∇W =

∑N
n=1∇n

W

N
W t := W t−1 − η∇W

Federated Learning:
Challenges:

Ones from DL

Intrinsic distributed data

Security concern

Prohibitive communication
cost

How to do federated
optimization?
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Federated Optimization Problem Baseline Algorithm

Baseline Algorithm

Baseline algorithm: FedAvg1

Algorithm 1 FedAvg

Require: Initialize parameters W 0

for round t in {1, ...T} do
for client k in {1, ...K} parallel do

Iterate SGD for n steps: W t
k = SGD(W t−1, n) ▷ Client-side

(∆t
k := W t

k −W t)
end for
W t =

∑K
k=1 W

t
k /K

(W t = W t−1 +
∑K

k=1 ∆
t
k/K ) ▷ Server-side

end for

In ideal cases, the communication cost is reduced to O( 1n )

1McMahan et al. 2016.
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Federated Optimization Problem Generalized Framework

Generalized Framework

FedOpt from Adaptive Federated Optimization2:

Algorithm 2 FedOpt

Require: Initialize parameters W 0

for round t in {1, ...T} do
for client k in {1, ...K} parallel do

W t
k := ClientOpt(W t−1) ▷ Client-side

∆t
k := W t

k −W t

end for
∆t := Aggre({∆t

k , 0 ≤ k < K}) ▷ Server-side
W t+1 := ServerOpt(∆t)

end for

ServerOpt
GD, Nestrv. GD,
Adam, etc.

ClientOpt
SGD, Nestrv. SGD,
Adam, AdaGrad, etc.

Aggre
Averaging, Medianing,
etc.

FedAvg: SGD+ Averaging + GD with η = −1

2Reddi et al. 2020.
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Federated Optimization Problem Problems of Federated Optimization

Problems of Federated Optimization

There are still problems in federated optimization:

Statistical heterogeneity

Computational heterogeneity

Additional privacy constraints

Communication efficiency

...
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An Introduction to Our Work Model Fairness

Model Fairness

Case Study: Non-iid partitioned MNIST + Multi-Layer Perceptron
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Figure: Left: Distributions of local datasets Right: Training curves

Fairness problem: Differences of model performance across
participants in a federated training process.
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An Introduction to Our Work Our Contribution

Our Contribution

Formulate fairness-controlled federated learning

Provide the theoretical fairness guarantee for the solution of the
reformulated problem

Analyse the convergence of Federated Adam

Propose Adaptive Federated Adam to optimize the problem
with better convergence

Li Ju (Uppsala University) Federated Learning October 11, 2025 10 / 14



An Introduction to Our Work Analysis of FedAdam

Analysis of FedAdam

Unbiased gradient
estimation

Parameter
update

Accumulated
SGD updates

Centralized
Training

FL with IID
data

Adam

Adam with
Acc. updates

FL with 

non-IID data

FedAdam

Pseudo-
gradient

Parameter
update

Parameter
update

Loss of
Convergence

Bias
Introduced

Average of
local updates
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An Introduction to Our Work Convergence & Fairness

Convergence & Fairness
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SYNTHETIC: Test Accuracy
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MNIST: Distribution of Local Accuracy
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An Introduction to Our Work Optimality & Robustness

Optimality & Robustness

Pareto Optimality
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Pareto Front of the Synthetic setup

Pareto Front of the Synthetic setup formed by AdaFedAdam with
different α.

Robustness against partial participation & arbitrary numbers of local
steps.
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An Introduction to Our Work Optimality & Robustness

Thank you!

Questions?
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