
Denoising Diffusion Probabilistic Model (DDPM)

Li Ju, Usama Zafar



∙ Aim: We want to generate images!

∙ We actually mean: To sample from
𝑃 (𝑋0), 𝑋0 : R𝑊 × R𝐻 × R3

(fixed sized image).

∙ Not feasible to directly model
𝑃 (𝑋0) (high dimension).

Images generate by Denoising
Diffusion Probablistic Model
(DDPM)1

1Ho et al. [2020]
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General Idea of DDPM
"Learn to Construct by Destroying"

Denoising diffusion models consist of two processes:

1. Forward diffusion: Gradually add noise to original image 𝑥0.

2. Reverse denoising: Learn (approximate) the process of
denoising.

Data Noise

Forward diffusion process (fixed)

Reverse denoising process (generative)
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Forward Diffusion Process

The forward process is defined as a fixedMarkov Chain:

𝑋0 𝑋1 · · · 𝑋𝑇

Time Step 0 → 𝑇

𝑋𝑡|𝑥𝑡−1 ∼ 𝒩 (𝑋𝑡;
√︀

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡𝐼)

where 𝛽𝑡 ∈ (0, 1), ∀𝑡 ∈ {1, . . . , 𝑇} is a predefined sequence of
monotonically increasing parameters.
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Forward Diffusion Process

Let 𝛼𝜏 =
∏︀𝜏

𝑡=1 (1 − 𝛽𝑡). Any any time step we have

𝑋𝑡|𝑥0 ∼ 𝒩 (𝑋𝑡;
√

𝛼𝑡𝑥0, (1 − 𝛼𝑡)𝐼)

Due to the choice of 𝛽𝑡 values such that 𝛼𝑇 → 0, further we have

𝑋𝑇 |𝑥0 ∼ 𝒩 (𝑋𝑇 ; 0, 𝐼) and 𝑋𝑇 ∼ 𝒩 (𝑋𝑇 ; 0, 𝐼)

approximately.

To summarize,

∙ We know 𝑝(𝑋𝑡|𝑥0), ∀𝑡 ∈ [1, . . . , 𝑇 ] and 𝑝(𝑋𝑇 )
∙ We don’t know 𝑝(𝑋0), which is intractable from 𝑝(𝑋0:𝑇 ).
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Reverse Denoising Process
Variational Family

We can approximate it with 𝑄𝜃 ∈ 𝒬𝜃 from a parameterised
variational family which is a reverse Markov chain:

𝑋0 𝑋1 · · · 𝑋𝑇

Time Step 𝑇 → 0

i.e.

𝑄𝜃(𝑋0:𝑇 ) = 𝑄𝜃(𝑋𝑇 )
𝑇∏︁

𝑡=1
𝑄𝜃(𝑋𝑡−1|𝑥𝑡)

Further we assume 𝑃 (𝑋𝑇 ) = 𝑄𝜃(𝑋𝑇 ) = 𝒩 (0, 𝐼).
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Reverse Denoising Process
Derivation of Loss: I

We want to minimise KL (𝑃 (𝑋0:𝑇 )‖𝑄𝜃(𝑋0:𝑇 )) (Why?)

KL (𝑃 (𝑋0:𝑇 )‖𝑄𝜃(𝑋0:𝑇 ))

= E𝑃

[︂
ln 𝑝(𝑋0:𝑇 )

𝑞𝜃(𝑋0:𝑇 )

]︂
= E𝑃

[︂
ln 𝑝(𝑋1:𝑇 |𝑥0)

𝑞𝜃(𝑋1:𝑇 |𝑥0) − ln 𝑞𝜃(𝑋0) + ln 𝑝(𝑋0)
]︂

= E𝑃 (𝑋0)

⎡⎢⎢⎢⎣E𝑃 (𝑋1:𝑇 |𝑥0)

[︂
ln 𝑝(𝑋1:𝑇 |𝑥0)

𝑞𝜃(𝑋1:𝑇 |𝑥0)

]︂
− ln 𝑞𝜃(𝑋0)⏟  ⏞  

negative ELBO

+ ln 𝑝(𝑋0)

⎤⎥⎥⎥⎦
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Reverse Denoising Process
Derivation of Loss: II

We further factorise 𝑝(𝑋1:𝑇 |𝑥0) and 𝑞𝜃(𝑋1:𝑇 |𝑥0):

E𝑃 (𝑋1:𝑇 |𝑥0)

[︂
ln 𝑝(𝑋1:𝑇 |𝑥0)

𝑞𝜃(𝑋1:𝑇 |𝑥0)

]︂
− ln 𝑞𝜃(𝑋0)

= −E𝑃 (𝑋1|𝑥0) [ln 𝑞𝜃(𝑋0|𝑥1)]⏟  ⏞  
𝐿0

+

𝑇∑︁
𝑡=2

E𝑃 (𝑋𝑡|𝑥0) [KL(𝑃 (𝑋𝑡−1|𝑥𝑡, 𝑥0)‖𝑄𝜃(𝑋𝑡−1|𝑥𝑡))]⏟  ⏞  
𝐿𝑡−1

+

KL(𝑃 (𝑋𝑇 |𝑥0)‖𝑄𝜃(𝑋𝑇 ))⏟  ⏞  
𝐿𝑇 (const.)
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Reverse Denoising Process
Parameterisation

For 𝐿𝑡−1, we assume 𝑄𝜃(𝑋𝑡−1|𝑥𝑡) are Gaussian distributions for all
𝑡 ∈ [0, 𝑇 ]:

𝑄𝜃(𝑋𝑡−1|𝑥𝑡) = 𝒩 (𝜇𝜃(𝑥𝑡, 𝑡), 𝛽𝑡𝐼)

We can use a neural network 𝑓𝜃(𝑥𝑡, 𝑡) to approximate 𝜇𝜃(𝑥𝑡, 𝑡).

For 𝐿0, similarly, we use another neural network 𝑔𝜃(𝑥1) to
approximate ln 𝑞𝜃(𝑋0|𝑥1).
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Summary

∙ DDPMs model complex probability distribution by:
– A forward process that transforms it into a simple distribution by

gradual distortion.
– A reverse process as the variational family to approximate the

posterior, thanks to Bayesian inference.

∙ DDPM is deeply rooted on Bayesian statistics, utilising
variational inference and neural networks.

∙ Implementation details are skipped (residual modelling,
reparameterisation trick, etc.).
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Thank you for your attention!
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