
Flow Matching and Diffusion Models

Li Ju
li.ju@it.uu.se

July 8, 2025

A very broad problem of interest is that, given z ∼ Pdata, with samples {zi}Ni=1 from Pdata, how to sample
more data from Pdata.

1 Basics of differential equations

In this section, we familiarise ourselves with a specific type of ordinary differential equations (ODE) and
stochastic differential equations (SDE), which provide an alternative perspective for us to derive and under-
stand flow matching and diffusion models.

1.1 ODE

Vector field First, we define a type of function called time-varying vector field u : Rd×[0, 1] → Rd, (x, t) 7→
ut(x), where d is the dimension of the vector field, x denotes the location of the field, t denotes the time and
ut(x) is the direction of the field at location x at time t.

ODE Now we define the specific type of the ODE we are interested in:

d

dt
Xt = ut(Xt), X0 = x0 (1)

where X : [0, 1] → Rd, t 7→ Xt is a trajectory (of a particle), which describe its movement along time t. The
ODE describe a trajectory such that at any time t, the velocity of X at Xt is following ut(Xt).

Given a fixed vector field ut and an initial condition x0, under certain regularity conditions, there exists its
solution trajectory Xt.

Flow For a given vector field ut, the initial condition x0 determines the solution trajectory. For different
initial conditions there exist different trajectories. The collection of all these trajectories with infinite starting
points form a flow, described by ψ : Rd × [0, 1] → Rd, (x0, t) 7→ ψt(x0). This could be understood from a
perspective of higher order function: given an initial condition x0, partially applied function ψ(x0) returns
a trajectory function, which takes time t and return location ψt(x0).

In summary, given a fixed vector field, we can define an ODE, which has infinitely many solution trajectories
depending on their initial conditions. The function taking an initial condition and returning a solution
trajectory is called flow.

Simulations In general, given a vector field (ODE) u, it is not possible to analytically get its flow function.
Instead using different initial conditions we can obtain arbitrarily many trajectories to simulate the flow using
the following discretized form:

X0 = x0,

Xt+h = Xt + h ∗ ut(Xt),
(2)

where t = h, 2h, 3h, . . . 1− h, h = 1/n and n > 1.

1

Flow model Essentially, a flow describes how a collection of data is transformed into another collection
of data in Rd, which is characterised by a vector field u via an ODE. Likewise, such an ODE can also
convert/transform a distribution P0 into another distribution P1:

X0 ∼ P0,
d

dt
Xt = ut(Xt)

=⇒X1 ∼ P1.
(3)

Data generation is nothing but to sample from an unknown data distribution Pdata. If we can find a vector
field to characterise an ODE which converts a simple predefined distribution Pinit to the data distribution
Pdata, then with the simulation method provided by Equation 2 we can generate new data by sampling from
Pdata.

To find such a vector field, we generally use a parameterised neural network uθ to do so. Counter-intuitively,
flow model does not model the flow using neural network but model the vector field. The flow can be
obtained by sampling trajectories using the vector field:

Algorithm 1 Euler’s method for sampling with a flow method

Require: Initial distribution Pinit, vector field u
θ, total steps T

h = 1/T, t = 0
Draw a sample X0 ∼ Pinit as x0
for i = 1, 2, . . . , T do

xt+h = xt + huθt (xt)
Update xt = xt+h and t = t+ h

end for
Return xt

1.2 SDE

For ODE method, for a certain vector field, given a fixed initial point, the solution trajectory is deterministic
with a fixed sample. It is possible to extend this into stochastic with stochastic trajectories via stochastic
differential equations.

Stochastic trajectory A stochastic trajectory X is denoted by (Xt)t∈[0,1], characterised by

• ∀t ∈ [0, 1], Xt is a random variable (instead of a deterministic point),

• any sample from (Xt)t∈[0,1] is a trajectory [0, 1] → Rd.

Brownian motion SDE are generally constructed by a simplest stochastic process, Brownian motion
(W0)t≥0, with following conditions:

• W0 = 0,

• Normal increments: Wt −Ws ∼ N (0, (t− s)Id) for all 0 ≤ s < t, where d denotes the dimension,

• Independent increments: For any 0 ≤ t0 < t1 < . . . tn, the increments W1−W0, . . .Wn−Wn−1 are
independent random variables.

To simulate Brownian motions, one can simply useWt+h =Wt+
√
hϵ where ϵ ∼ N (0, Id) and t = 0, h, 2h,

From ODE to SED An ODE is defined by the derivative of the solutions. However for SDE making use
of Brownian motions, it is impossible since each single step is random, which could not be taken derivatives.
Instead, an SDE is formally defined by its integral form but here we informally define an SDE via its
increments:

dXt = ut(Xt)dt+ σtdWt, X0 = x0 (4)

With σt = 0, we can see that ODE is a special case of SDE (or SDE is an extension of ODE, reversely).

2

Simulation For SDE, it is even harder (if even possible) to obtain the flow function. But there exists an
easy way to simulate it using the following discretized form:

X0 = x0,

Xt+h = Xt + h ∗ ut(Xt) +
√
hϵ, ϵ ∼ N (0, Id),

(5)

where t = h, 2h, 3h, . . . 1− h, h = 1/n and n > 1.

Diffusion model An SDE with a fixed vector field u and a predefined diffusion coefficient σ can also
convert a collection of data into another collection. Similarly, we also want to find an SDE which can
convert an initial distribution Pinit to the distribution we are interested in Pdata, characterised by a vector
field u and a diffusion coefficient σ as follows:

X0 ∼ Pinit,
d

dt
Xt = ut(Xt) + σtdWt

target: X1 ∼ Pdata.
(6)

This is called a diffusion model. In general, the diffusion coefficient σ : [0, 1] → R, t 7→ σt is predefined and
we use a parameterised neural network uθ : Rd × [0, 1] → Rd, (x, t) 7→ uθt (x) to approximate u.

With the neural network vector field uθ, we can generate new data via sampling using the following algorithm:

Algorithm 2 Euler-Maruyama’s method for sampling from a diffusion model

Require:
Require: Initial distribution Pinit, vector field u

θ, diffusion coefficient σt, total steps N
h = 1/N, t = 0
Draw a sample from Pinit as x0.
for i = 1, 2, . . . , T do

Draw a sample ϵt from a standard Gaussian N (0, Id)
xt+h = xt + huθt (xt) +

√
hϵt

Update xt = xt+h and t = t+ h.
end for
Return xt

2 Constructing the training target

In this section we will introduce the construction of the training target and we will show how to approximate
it with a neural network.

2.1 Conditional and marginal probability path

Recall that using a certain vector field u, we can convert data from a predefined distribution P0 to our target
distribution P1. This can be seen as a continuous path of probability distributions Pt, t ∈ [0, 1]. We are
aiming to convert P0 = Pinit to P1 = Pdata.

2.1.1 Conditional probability path

First we define Dirac distribution ∆z where z ∈ Rd, characterised by its probability density function (PDF)

δz(x) =

{
1 if x = z

0 otherwise
.

3

Then a conditional probability path is a set of time-dependent probability distributions Pt(· | z) over Rd such
that

P0(· | z) = Pinit and P1(· | z) = ∆z.

A probability path can be seen as a trajectory path in the probability space and can be characterised by its
time dependent PDF pt(· | z),

2.1.2 Marginal probability path

For each conditional probability path Pt(· | z), if there exists an associated marginal probability path Pt over
Rd if we integrate z out over Pdata:

z ∼ Pdata, x | z ∼ Pt(· | z)

=⇒ x ∼ Pt, pt(x) =

∫
pt(x | z)pdata(z)dz

where pt(·) is the PDF of the marginal probability path Pt.

We can see that

p0(x) =

∫
pinit(x)pdata(z)dz = pinit

∫
(x)pdata(z)dz = pinit(x) =⇒ P0 ∼ Pinit

p1(x) =

∫
δz(x)pdata(z)dz = pdata(x) =⇒ P1 ∼ Pdata.

In summary, conditional probability path describe the trajectory between Pinit to a specific data point z ∼
Pdata, while marginal probability path is the trajectory between Pinit to Pdata in the probability space.

Gaussian example Let’s construct a gaussian example for the conditional probability path and derive its
associated marginal probability path.

We define that
Pt(· | z) ∼ N (αtz, β

2
t I) such that α0 = 0, α1 = 1, β0 = 1, β1 = 0.

This gives that
Pinit = P0(· | z) ∼ N (0, I) and P1(· | z) = ∆z.

There exist an associated marginal probability path Pt. Though we do not have access to its PDF directly,
we can draw a sample x from Pt with

z ∼ Pdata, ϵ ∼ N (0, I) =⇒ x = αtz + βtϵ.

2.2 Conditional and marginal vector field

Now that we can construct a marginal probability path to convert Pinit to Pdata, we are interested in the
marginal vector field utarget which can make the actual conversion.

2.2.1 Tools

Before our derivation, we start with a definition of divergence operator div and continuity equation.

Divergence div of a vector field vt : (R× t) → Rd is defined as follows:

div(vt)(x) =

d∑
i=1

∂

∂xi
vt(x)

4

Continuity equation Consider a flow model with vector field vt and X0 ∼ P0. Then Xt ∼ Pt for all
t ∈ [0, 1] if and only if

dpt(x)

dt
= − div(ptvt)(x) ∀x ∈ Rd, t ∈ [0, 1],

where pt denote the PDF of Pt.

2.2.2 Conditional vector field

Before we look at the marginal vector field, we check the conditional vector field utarget(· | z), which converts
Pinit to ∆z. Conditional vector field is generally tractable for a given probability path. Specifically, it is
derived with continuity equation. We here use the gaussian probability path as an example.

Gaussian example Recall that the gaussian probability path is defined as

Pt(· | z) ∼ N (αtz, β
2
t I).

For any position x at t, we have
x = αtz + βtϵ, ϵ ∼ N (0, Id).

The vector field utargett (· | z) is then given by

utargett (x | z) = ∂x

∂t
(x, t, z) = α̇tz + β̇tϵ

=
∂x

∂t
(x, t, z) = α̇tz + β̇t

x− αtz

βt
(Given by ϵ =

x− αtz

βt
)

=

(
α̇t − αt

β̇t
βt

)
z +

β̇t
βt
x

2.2.3 Marginal vector field

Although marginal vector field is the one of our interest, it is very hard to derive it directly. Instead, we
derive the conditional ones first and then use them to build the marginal vector field.

Assume that we have data z ∼ Pdata and conditional vector field utargett (· | z), the marginal vector field
utargett is given by

utargett (x) =

∫
utargett (x | z)pt(x | z)pdata(z)

pt(x)
dz, (7)

which follows the marginal probability path Pt.

Proof. To prove it, we need to make use of the continuity equation:

d

dt
pt(x) =

d

dt

∫
pt(x | z)pdata(z)dz

=

∫
d

dt
pt(x | z)pdata(z)dz (under some regularity conditions)

=

∫
div(pt(· | z)utargett (· | z))(x)pdata(z)dz (continuity equation)

=

∫
div

(
pt(·)pt(· | z)

pdata(z)

pt(·)
utargett (· | z)

)
(x)dz

= div

pt(·)
∫
pt(· | z)pdata(z)

pt(·)
utargett (· | z)dz︸ ︷︷ ︸

utarget
t

 (x). (swap operators)

5

Again, using continuity equation, we have

utargett (x) =

∫
pt(x | z)pdata(z)

pt(x)
utargett (x | z)dz.

2.3 Extending to SDE

2.3.1 Tools

Fokker-Planck equation Let Pt be a probability path and consider an SDE

X0 ∼ Pinit, dXt = ut(Xt)dt+ σtdWt.

Then Xt has a distribution path of Pt characterised by its PDF pt if and only if

∂

∂t
pt(x) = −div(ptut)(x) +

σ2
t

2
∆pt(x),∀x ∈ Rd, t ∈ [0, 1],

where ∆ denotes the Laplacian operator ∆w(x) =
∑d

i=1
∂2w(x)
∂2xi

= div(∇w)(x).

Score function Term ∇x log p(x) is generally called score function. Thus, we have ∇x log pt(x | z) as the
conditional score function and ∇x log pt(x) marginal score function in our context.

2.3.2 Main results

Now we have known how to construct a vector field to convert Pinit to Pdata via ODE. Alternatively, we can
also do this conversion via an SDE:

X0 ∼ Pinit, dX =

(
utargett (x) +

σ2
t

2
∇x log pt(x)

)
dt+ σtdW,

=⇒X ∼ Pt, t ∈ [0, 1].

(8)

If we replace all marginal entities to conditional ones the conversion still holds.

We know everything in this SDE but the score function ∇x log pt(x), which can be derived as follows:

∇x log pt(x) =
∇xpt(x)

pt(x)

=
∇x

∫
pt(x | z)pdata(z)dz

pt(x)

=

∫
∇xpt(x | z)pdata(z)dz

pt(x)

=

∫
pt(x | z)pdata(z)

pt(x)
∇x log pt(x | z)dz.

(9)

we can see that the marginal score function is also the weighted average of the conditional score function,
with the same weights as those of the vector fields.

Now we prove the main results.

6

Proof.

∂pt(x)

∂t
= −div(ptu

target
t)(x)

= −div(ptu
target
t)(x)− σ2

t

2
∆pt(x) +

σ2
t

2
∆pt(x)

= −div(ptu
target
t)(x)− σ2

t

2
div(∇pt)(x) +

σ2
t

2
∆pt(x)

= −div(ptu
target
t)(x)− σ2

t

2
div(pt∇ log pt)(x) +

σ2
t

2
∆pt(x)

= −div

(
pt

(
utargett +

σ2
t

2
∇ log pt

))
(x) +

σ2
t

2
∆pt(x).

Thus, the vector field that can make the conversion is given by utargett +
σ2
t

2 ∇ log pt.

Remark If the probability path is static, i.e. Pt = P , we have utargett = 0 and this is called Langevin
dynamics. Using Euler-Maruyama’s method, one can sample from a static distribution P .

Gaussian example The conditional gaussian score function ∇x log pt(x | z) is given by

∇x log pt(x | z) = ∇x

(
−1

2
β−2
t (x− αtz)

⊤(x− αtz)

)
= −β−2

t (x− αtz)

3 Deriving loss functions

In this section, we derive the loss functions for the training. We start from the flow model, and then we
extend it to diffusion model, and then we recover the classic denoising diffusion model with other notes.

3.1 Loss for flow model

utargett is the vector field we are interested in which can convert Pinit to Pdata. We want to use a parameterised
neural network uθt to approximate it. A straightforward approach is to minimise the ℓ2 norm of the two
functions:

LFM = Et∼U(0,1),x∼Pt

[
∥uθt (x)− utargett (x)∥2

]
, (10)

where U(0, 1) denotes a uniform distribution over 0 and 1.

From Equation 7, we know that

utargett (x) =

∫
utargett (x | z)pt(x | z)pdata(z)

pt(x)
dz.

However, the target is intractable: 1). the integration is hard to solve, 2). we do not know pdata and pt(x).

Another way around is that we use the following loss

LCFM = Et∼U(0,1),x∼Pt(·|z),z∼Pdata

[
∥uθt (x)− utargett (x | z)∥2

]
. (11)

We claim that LFM = LCFM + C, where C is a constant.

7

Proof.

LFM = Et∼U(0,1),x∼Pt(·|z),z∼Pdata

[
∥uθt (x)− utargett (x | z)∥2

]
= Et∼U(0,1),x∼Pt(·|z),z∼Pdata

∥uθt (x)∥2 − 2uθt (x)
⊤utargett (x | z) + ∥utargett (x | z)∥2︸ ︷︷ ︸

const.


= Et∼U(0,1),x∼Pt

[
∥uθt (x)∥2

]
− 2Et∼U(0,1),x∼Pt(·|z),z∼Pdata

[
uθt (x)

⊤utargett (x | z)
]
+ C1

= Et∼U(0,1),x∼Pt

[
∥uθt (x)∥2

]
− 2

∫ 1

0

∫ ∫
uθt (x)

⊤utargett (x | z)pt(x | z)pdata(z)dxdzdt+ C1

= Et∼U(0,1),x∼Pt

[
∥uθt (x)∥2

]
− 2

∫ 1

0

∫ ∫
uθt (x)

⊤pt(x)u
target
t (x | z)pt(x | z)pdata(z)

pt(x)
dxdzdt+ C1

= Et∼U(0,1),x∼Pt

[
∥uθt (x)∥2

]
− 2

∫ 1

0

∫
uθt (x)

⊤pt(x)u
target
t (x)dxdt+ C1 (use Equation 7)

= Et∼U(0,1),x∼Pt

[
∥uθt (x)∥2

]
− 2Et∼U(0,1),x∼Pt(·|z),z∼Pdata

[
uθt (x)

⊤pt(x)u
target
t (x)

]
+ C1

= Et∼U(0,1),x∼Pt

[
∥uθt (x)− utargett (x)∥2

]
+ C2

Now we have all the ingredients we have for the training of the target vector field.

Loss for the gaussian example Recall the gaussian example we have

Pt(· | z) ∼ N (αtz, β
2
t I), where α0 = 0, α1 = 1, β0 = 1, β1 = 0,

which has its conditional vector field (as shown in the last section)

utarget(x | z) =

(
α̇t − αt

β̇t
βt

)
z +

β̇t
βt
x.

We know that x ∼ Pt(· | z) can be rewritten as βtϵ+ αtz, where ϵ ∼ N (0, I), the loss can be written as

LG
CFM(θ) = Et∼U(0,1),ϵ∼N (0,I),z∼Pdata

[
∥uθ(αtz + βtϵ)−

(
α̇t − αt

β̇t
βt

)
z − β̇t

βt
(βtϵ+ αt)∥2

]
= Et∼U(0,1),ϵ∼N (0,I),z∼Pdata

[
∥uθ(αtz + βtϵ)− (α̇tz + β̇tϵ)∥2

] (12)

If we have αt = t and βt = 1− t, which gives α̇t = 1 and α̇t = −1, the method is called condOT probability
path and the loss is given by

LcondOT
CFM (θ) = Et∼U(0,1),ϵ∼N (0,I),z∼Pdata

[
∥uθ(tz + (1− t)ϵ)− (z − ϵ)∥2

]
.

The algorithm obtained is given by Algorithm 0.

Then with uθ we can apply Euler’s method to sample from Pdata by simulating the ODE.

3.2 Loss for diffusion model

With the trained uθ, alternatively we can also sample from Pdata by simulating the SDE in Equation

dXt = (uθ +
σ2
t

2
∇x log pt(x)) + σtdWt, X0 ∼ Pinit,

where σ2
t is a predefined hyper-parameter.

8

Algorithm 3 Training algorithm for flow methods

Require: Dataset {zn}Nn=1

Initialize model uθ

for i = 1, 2, . . . , T do
Draw a sample z from {zn}Ni=1.
Draw a sample ϵ ∼ N (0, I).
Draw a sample t ∼ U(0, 1).
Compute condOT loss L(θ) = ∥uθ(tz+(1− t)ϵ)− (z− ϵ)∥2 (or general ∥uθ(αtz+βtϵ)− (α̇tz+ β̇tϵ)∥2).
Back propagate to update model parameters θ.

end for
Return θ

But we do not know the score function ∇x log pt(x)) yet and we need to learn it. The loss we are interested
in is

LDM = Et∼U(0,1),x∼Pt

[
∥sθt (x)−∇x log pt(x))∥2

]
. (13)

Though it is intractable, following the similar approach as we did for the vector field, we can approve that
it is equivalent to the conditional score loss

LCDM = Et∼U(0,1),x∼Pt(·|z),z∼Pdata

[
∥sθt (x)−∇x log pt(x | z))∥2

]
, (14)

where we have LDM = LCDM + C.

Loss for the gaussian example For the gaussian example, we have the conditional score function

∇x log pt(x | z) = −β−2
t (x− αtz).

The score matching loss is then given by

LG
CDM = Et∼U(0,1),x∼Pt(·|z),z∼Pdata

[
∥sθt (x) + β−2

t (x− αtz)∥2
]
. (15)

With x = αtz + βtϵ where ϵ ∼ N (0, I), we further have

LG
CDM = Et∼U(0,1),ϵ∼N (0,I),z∼Pdata

[
∥sθt (αtz + βtϵ) +

ϵ

βt
∥2
]
. (16)

Since βt → 0 as t→ 1, the loss is numerically unstable, it can be reformed as

LG
CDM = Et∼U(0,1),ϵ∼N (0,I),z∼Pdata

[
∥ϵθt (αtz + βtϵ)− ϵ∥2

]
, (17)

where ϵθt = −βtsθt predicts the noise added during the corruption, as people did in Denoising Diffusion
Probabilistic Model (DDPM).

The algorithm for learning the score function is given by Algorithm 0.

Then with both uθ and sθ(ϵθ) we can apply Euler-Maruyama’s method to sample from Pdata by simulating
the SDE.

3.3 Efficient training for diffusion models

Compared to flow models, diffusion models require both the vector field uθ and the score function sθ as
opposed to flow models, which seems to double the computational cost. However, there are two main
approaches to tackle this problem:

• Training one single neural network with two distinct outputs, which minimize the extra computation.

• For gaussian probability path, the vector field and the score function can be converted to each other.
Thus, training a neural network for either should be enough.

9

Algorithm 4 Training algorithm for score functions

Require: Dataset {zn}Nn=1, noise scheduler αt and βt.
Initialize model sθ or ϵθ

for i = 1, 2, . . . , T do
Draw a sample z from {zn}Ni=1.
Draw a sample ϵ ∼ N (0, I).
Draw a sample t ∼ U(0, 1).
Compute score loss L(θ) = ∥sθ(αtz + βtϵ) +

ϵ
βt
∥2 (or DDPM L(θ) = ∥ϵθ(αtz + βtϵ)− ϵ∥2).

Back propagate to update model parameters θ.
end for
Return θ

Conversion formula for Gaussian probability path For the gaussian probability path Pt(· | z) ∼
N (αtz, βtI), using simple algebra we have following conversion formula for both conditional and marginal
between vector fields and score functions.

utargett (x | z) =
(
α̇t

αt
β2
t − β̇tβt

)
∇x log pt(x | z) + α̇t

αt
x, (18)

utargett (x) =

(
α̇t

αt
β2
t − β̇tβt

)
∇x log pt(x) +

α̇t

αt
x (19)

Then we can just train to learn either sθ or uθ only, and then obtain another from it and use both for
sampling/simulating the SDE. If we have sθ, we can apply arbitrary σt to sample from Pdata using Euler-
Maruyama’s method via the following SDE:

dW =

[(
α̇t

αt
β2
t − β̇tβt +

σ2
t

2

)
sθ(x)

]
dt+

α̇t

αt
x+ σtdWt.

4 Comparison to other literatures

Discrete time vs continuous time Diffusion models are firstly developed from a perspective of markov
chain in discrete time, but later people realise that understanding it from an SDE/ODE’s perspective in
continuous time is much simpler and mathematically cleaner. The loss in discrete time is constructed via an
evidence lower bound, which is the lower bound of the loss we are interested in in discrete time but becomes
tight (not a bound any more) in continuous time. But the loss functions in both approach are identical.

Forward process vs probability path Using an inverted time convention, the SDE form of the forward
process is given by

X̂0 = z, dX̂t = uforw(X̂t)dt+ σforw
t dWt,

which is designed such that for t → ∞, X̂t → N (0, I). This is equivalent to our conditional probability
path Pt(· | z) in an inverted time convention. However, this construction is annoying since we need to know
X̂t | X̂0 in closed form to avoid simulating this SDE during the training stage, which must be an affine
transformation of z. This restrict the choice of our noise schedulers.

So, forward pass is a specific way to construct a probability path.

Time-reversal vs continuity (Fokker-Planck) equation In the original paper, utarget and ∇ log pt(x)
are not constructed by continuity and Fokker-Planck equation but via the time-reversal of the constructed
probability path where P0 = Pdata and P1 = Pinit, which can be described with the following SDE

dXrev
t = (−uforwt (Xrev

t) +
(σrev

t)2

2
∇pt(Xrev

t)) + σrev
t dWt,

10

where σrev
t = σforw

T−t .

However, this is an overkill since for generative modelling, we are only interested in the final point X1

disgarding intermediate points.

Flow matching and stochastic interpolants The construction of this work is from a perspective of
flow matching and then extend to its SDE form. Alternatively all the work could be done in the language
of stochastic interpolant, which intends to interpolate between two arbitrary distributions. One should be
clear that using flow matching, the ODE itself is deterministic and all the randomness in the generation is
in sampling x0 ∼ N(0, I) and the generated x1 | x0 is always a point. Using SDE, both sampling x0 and
generating process are random, yielding more diverse output.

5 Building an image generator

Now we can model the probability for Pdata. However, for image generation, instead of generating an
arbitrary image, we are more interested in generating an image guided by a caption y. This can be done by
modelling the conditional probability on caption Pdata(· | y).

Terminology Here in the notes, we denote conditioned on image caption y as guided. For example we call
Pdata(· | y) guided data distribution, utarget(· | z) where z ∼ Pdata(· | y) the guided conditional vector field
to avoid the use of term condition on y and z at the same time.

Guided generative model We are interested in modelling the guided data distribution Pdata(· | y) with
variable y ∈ Y.

5.1 Guided flow model

By replacing all Pdata with Pdata(· | y), we can obtain the training target for a flow model for a fixed image
caption y:

L′
GCFM = Et∼U(0,1),x∼Pt(·|z),z∼Pdata(·|y)

[
∥uθt (x | y)− utargett (x | z)∥2

]
.

Note here uθ(x | y) does not depend on y at all since y is always fixed. Further by expanding the expectation
to y ∼ Y, we then have

LGCFM = Et∼U(0,1),x∼Pt(·|z),z∼Pdata(·|y),y∼Y
[
∥uθt (x | y)− utargett (x | z)∥2

]
, (20)

where uθ : (Rd,Y, [0, 1]) → Rd, (x, y, t) 7→ uθt (x | y) is a neural network.

Further improvements Although Equation 22 is mathematically sound, empirically models trained with
it are not well-fit enough for the guided image generation and stronger guidance is required.

Recall the conversion between the vector field utargett (x) and the score function ∇x log pt(x) for gaussian
probability path, we have the guided version of the conversion

utargett (x | y) = ax+ b∇x log pt(x | y)

where a = α̇t

αt
and b = α̇t

αt
β2
t − β̇tβt.

Further we have

utargett (x | y) = ax+ b∇x log pt(x | y)
= ax+ b∇x log pt(x)︸ ︷︷ ︸

utarget
t (x)

+b∇x log pt(y | x)− b∇x log pt(y)︸ ︷︷ ︸
const.

= utargett (x) + b∇x log pt(y | x)− const.

11

It is observed that all the information from the guidance is in the second term. To enhance the guidance, it
is reasonable to scale it up with w > 1:

ũtargett (x | y) = utargett (x) + wb∇x log pt(y | x)
= ax+ b∇x log pt(x) + wb(∇x log pt(x | y) +∇x log pt(y)︸ ︷︷ ︸

const.

−∇x log pt(x))

= (1− w)(ax+ b∇x log pt(x)︸ ︷︷ ︸
utarget
t (x)

) + w(ax+ b∇x log pt(x | y)︸ ︷︷ ︸
utarget
t (x|y)

)

= (1− w)utargett (x) + wutargett (x | y).

To model both utargett (x) and utargett (x | y) with one single neural network, we can use the following objective
function

LCF
GCFM = Et∼U(0,1),x∼Pt(·|z),z∼Pdata(·|y),y∼Y

[
∥uθt (x | y)− utargett (x | z)∥2

]
, replace y = ∅ with probability η.

(21)

This is can be done with Algorithm below

Algorithm 5 Training algorithm for guided flow method

Require: Dataset {zn}Nn=1

Initialize model uθ

for i = 1, 2, . . . , T do
Draw a sample z from {zn}Ni=1 with its label y.
Let y = ∅ at probability of η.
Draw a sample ϵ ∼ N (0, I).
Draw a sample t ∼ U(0, 1).
Compute loss ∥uθ(αtz + βtϵ | y)− (α̇tz + β̇tϵ)∥2).
Back propagate to update model parameters θ.

end for
Return θ

Then we have utargett (x) ≈ uθt (x | ∅) and utargett (x | y) ≈ uθt (x | y). With different w by simulating ODE with
ũtarget(x | y) we can obtain better empirical results.

5.2 Guided diffusion model

Additional to the vector field, we are also interested in the guided score function ∇x log pt(x | y) to sample
from the SDE. This can be done with

LGCDM = Et∼U(0,1),x∼Pt(·|z),z∼Pdata(·|y),y∼Y
[
∥sθt (x | y)− stargett (x | z)∥2

]
, (22)

where sθ : (Rd,Y, [0, 1]) → Rd, (x, y, t) 7→ sθt (x | y) is a neural network.

Further improvement To make label enhancement align with diffusion models, we have

∇x log pt(x | y) = ∇x log pt(y | x) +∇x log pt(x)−∇x log pt(y)

By enhancing the label y we have

s̃targett (x | y) = w∇x log pt(y | x) +∇x log pt(x)

= (1− w)stargett (x) + wstargett (x | y).

Then the loss for the score function is given by

LCF
GCSM = Et∼U(0,1),x∼Pt(·|z),z∼Pdata(·|y),y∼Y

[
∥sθt (x | y)− stargett (x | z)∥2

]
, replace y = ∅ with probability η.

(23)

12

Inference With uθt (x | y), sθt (x | y) and a fix w, we have

ũt(x | y) = (1− w)uθt (x | ∅) + wuθt (x | y)
s̃t(x | y) = (1− w)sθt (x | ∅) + wsθt (x | y).

Then we simulate the SDE

dXt =

[
ũt(x | y) + σ2

t

2
s̃t(x | y)

]
+ σtdWt, X0 ∼ Pinint

13

	Basics of differential equations
	ODE
	SDE

	Constructing the training target
	Conditional and marginal probability path
	Conditional probability path
	Marginal probability path

	Conditional and marginal vector field
	Tools
	Conditional vector field
	Marginal vector field

	Extending to SDE
	Tools
	Main results

	Deriving loss functions
	Loss for flow model
	Loss for diffusion model
	Efficient training for diffusion models

	Comparison to other literatures
	Building an image generator
	Guided flow model
	Guided diffusion model

