Flow Matching and Diffusion Models

Li Ju
1i.ju@it.uu.se

July 8, 2025

A very broad problem of interest is that, given z ~ Pg.ta, with samples {zl}f\il from Pyata, how to sample
more data from Pgat,.

1 Basics of differential equations

In this section, we familiarise ourselves with a specific type of ordinary differential equations (ODE) and
stochastic differential equations (SDE), which provide an alternative perspective for us to derive and under-
stand flow matching and diffusion models.

1.1 ODE

Vector field First, we define a type of function called time-varying vector field u : R?x [0, 1] — R?, (x,t)
u¢(z), where d is the dimension of the vector field, z denotes the location of the field, ¢ denotes the time and
u¢(x) is the direction of the field at location x at time t.

ODE Now we define the specific type of the ODE we are interested in:

d

— X = u(Xy), Xo=zo (1)
dt

where X : [0,1] — R% ¢+ X, is a trajectory (of a particle), which describe its movement along time ¢. The
ODE describe a trajectory such that at any time ¢, the velocity of X at X; is following u:(X4).

Given a fixed vector field u; and an initial condition xg, under certain regularity conditions, there exists its
solution trajectory Xj.

Flow For a given vector field u;, the initial condition zg determines the solution trajectory. For different
initial conditions there exist different trajectories. The collection of all these trajectories with infinite starting
points form a flow, described by v : R% x [0,1] — R% (z0,t) + ¥¢(x0). This could be understood from a
perspective of higher order function: given an initial condition z, partially applied function ¥ (zg) returns
a trajectory function, which takes time ¢ and return location 1 (zg).

In summary, given a fixed vector field, we can define an ODFE, which has infinitely many solution trajectories
depending on their initial conditions. The function taking an initial condition and returning a solution
trajectory is called flow.

Simulations In general, given a vector field (ODE) w, it is not possible to analytically get its flow function.
Instead using different initial conditions we can obtain arbitrarily many trajectories to simulate the flow using
the following discretized form:
Xo = o,
Xipn = Xo + hxug(Xy),

where t = h,2h,3h,...1—h,h =1/n and n > 1.

(2)

Flow model Essentially, a flow describes how a collection of data is transformed into another collection
of data in R¢, which is characterised by a vector field u via an ODE. Likewise, such an ODE can also
convert /transform a distribution Py into another distribution P:

d
Xo~ Py, — X = u(Xy)

dt (3)

=X, ~ P,.

Data generation is nothing but to sample from an unknown data distribution Pyai,. If we can find a vector
field to characterise an ODE which converts a simple predefined distribution P, to the data distribution
Pjata, then with the simulation method provided by Equation 2 we can generate new data by sampling from
Pdata-

To find such a vector field, we generally use a parameterised neural network u? to do so. Counter-intuitively,
flow model does not model the flow using neural network but model the vector field. The flow can be
obtained by sampling trajectories using the vector field:

Algorithm 1 Euler’s method for sampling with a flow method

Require: Initial distribution P, vector field w?, total steps T
h=1/T,t=0
Draw a sample Xy ~ Pyt as zg
for:=1,2,...,7 do
Torp = o + huf ()
Update xy = x44p and t =t +h
end for
Return

1.2 SDE

For ODE method, for a certain vector field, given a fixed initial point, the solution trajectory is deterministic
with a fixed sample. It is possible to extend this into stochastic with stochastic trajectories via stochastic
differential equations.

Stochastic trajectory A stochastic trajectory X is denoted by (X¢)¢cjo,1), characterised by

e Vt € [0,1], X} is a random variable (instead of a deterministic point),

e any sample from (X;),c[0,1) is a trajectory [0,1] — R%.
Brownian motion SDE are generally constructed by a simplest stochastic process, Brownian motion
(Wo)i>0, with following conditions:

e Wy =0,

e Normal increments: W, — Wy ~ N (0, (t — s)1,) for all 0 < s < ¢, where d denotes the dimension,

e Independent increments: For any 0 <ty < t; < ...t,, the increments W, — Wy, ... W,, —W,,_1 are
independent random variables.

To simulate Brownian motions, one can simply use Wy, = W;4+v/he where e ~ N'(0,I3) and t = 0, h,2h,

From ODE to SED An ODE is defined by the derivative of the solutions. However for SDE making use
of Brownian motions, it is impossible since each single step is random, which could not be taken derivatives.
Instead, an SDE is formally defined by its integral form but here we informally define an SDE via its

increments:
dX; = ut(Xt)dt + o dWy, Xo = xg (4)

With o, = 0, we can see that ODE is a special case of SDE (or SDE is an extension of ODE, reversely).

Simulation For SDE, it is even harder (if even possible) to obtain the flow function. But there exists an
easy way to simulate it using the following discretized form:

Xo = @,

5)
Xt+h :Xt —l—h*ut(Xt) +\/E€, ENN(O,Id), (

where t = h,2h,3h,...1—h,h =1/n and n > 1.

Diffusion model An SDE with a fixed vector field u and a predefined diffusion coefficient o can also
convert a collection of data into another collection. Similarly, we also want to find an SDE which can
convert an initial distribution P, to the distribution we are interested in Pg.ta, characterised by a vector
field v and a diffusion coefficient ¢ as follows:

d
Xo ~ P, %Xt = w(Xy) + o dW;

target: X; ~ Piata-

(6)

This is called a diffusion model. In general, the diffusion coefficient o : [0,1] — R, ¢ — o; is predefined and
we use a parameterised neural network u? : R x [0,1] — R%, (z,t) — uf(z) to approximate u.

With the neural network vector field u’, we can generate new data via sampling using the following algorithm:

Algorithm 2 Euler-Maruyama’s method for sampling from a diffusion model

Require:
Require: Initial distribution P, vector field u?, diffusion coefficient oy, total steps N
h=1/N,t=0

Draw a sample from P.;; as zg.

fori=1,2,...,T do
Draw a sample ¢ from a standard Gaussian N (0, I)
Ti+h = Tt + hU?(.’Et) + \/EEt
Update xy = x44p and t =t + h.

end for

Return x;

2 Constructing the training target

In this section we will introduce the construction of the training target and we will show how to approximate
it with a neural network.

2.1 Conditional and marginal probability path

Recall that using a certain vector field u, we can convert data from a predefined distribution Py to our target
distribution P;. This can be seen as a continuous path of probability distributions P, ¢t € [0,1]. We are
aiming to convert Py = Pt to Py = Pyaga-

2.1.1 Conditional probability path

First we define Dirac distribution A, where z € R?, characterised by its probability density function (PDF)

5z(33):{1 ifz=2z

0 otherwise

Then a conditional probability path is a set of time-dependent probability distributions P;(- | z) over R? such
that
Py(-|2) = Pniy and Pi(-| 2) = A,.

A probability path can be seen as a trajectory path in the probability space and can be characterised by its
time dependent PDF p,(- | z),

2.1.2 Marginal probability path

For each conditional probability path P;(- | z), if there exists an associated marginal probability path P, over
R? if we integrate z out over Pyaga:

ZNPdata7 xlzNPt(|Z)
=z~ P, pi(z) = / Pe(Z | 2)Pdatal(z)dz

where p;(-) is the PDF of the marginal probability path P;.

We can see that
po(z) = / Pinit (T)Pdata(2)d2z = Pinit / (2)Pdata(2)dz = pinit(x) == Py ~ Pt

pl(x) = /5z($)Pdata(2)dZ = pdata(x) - Pl ~ Pdata~

In summary, conditional probability path describe the trajectory between P to a specific data point z ~
Piata, while marginal probability path is the trajectory between Pii; to Pgata in the probability space.

Gaussian example Let’s construct a gaussian example for the conditional probability path and derive its
associated marginal probability path.

We define that
P | 2) NN(atz,ﬂfI) such that a9 =0,a1 =1,8y=1,3; =0.

This gives that
Poit = Po(- | 2) ~N(0,I) and Pi(-|z) =A,.

There exist an associated marginal probability path P,. Though we do not have access to its PDF directly,
we can draw a sample z from P; with

z ~ Pyata, € ~ N(0,I) = = = a2z + Sye.

2.2 Conditional and marginal vector field

Now that we can construct a marginal probability path to convert Pt to Pgata, We are interested in the
marginal vector field u'®®°* which can make the actual conversion.

2.2.1 Tools

Before our derivation, we start with a definition of divergence operator div and continuity equation.

Divergence div of a vector field v; : (R x t) — R? is defined as follows:

9
div(vy) () = Z ot (@)

Continuity equation Consider a flow model with vector field v; and Xy ~ Py. Then X; ~ P, for all
t €10,1] if and only if
dp(z)
dt

= —div(pv)(x) Vo € RYt€(0,1],

where p; denote the PDF of P;.

2.2.2 Conditional vector field

Before we look at the marginal vector field, we check the conditional vector field u'®e°t(- | z), which converts
Py to A,. Conditional vector field is generally tractable for a given probability path. Specifically, it is
derived with continuity equation. We here use the gaussian probability path as an example.

Gaussian example Recall that the gaussian probability path is defined as

Pi(- | 2) ~ N (w2, BET).

For any position x at t, we have
T =z + Bre, € ~ N(0,1,).

The vector field u{*&**(- | 2) is then given by

o .
w1 | 2) = —x(x,t, z) = ayz + Bie

ot
ox . X — oz . T — ouz
ot (l‘, 72) oz + 61& ﬁt (leen Yy € Bt)

B Bi
=log—o— |2+ =5
< S Bt
2.2.3 Marginal vector field

Although marginal vector field is the one of our interest, it is very hard to derive it directly. Instead, we
derive the conditional ones first and then use them to build the marginal vector field.

Assume that we have data z ~ Pya. and conditional vector field u{*"#(- | z), the marginal vector field
uf™8" is given by
u;arget(x) _ /u;arget(m | Z)pt(x | Z)pdata(z) dz, (7)
pe(x)

which follows the marginal probability path P;.

Proof. To prove it, we need to make use of the continuity equation:

d d

£pt(w) =a /pt(33 | 2)Paata(2)dz

d
= / ﬁpt(x | 2)pdata(2)dz (under some regularity conditions)

= /div(pt(~ | 2)ui™8* (- | 2))(2)pdata(z)dz (continuity equation)

= [(mOmt 2D e) oy

= div pt(-)/l)t(.lzz?(;ata(z)u;arget(| z)dz | (z). (swap operators)

target
Uy &

Again, using continuity equation, we have

target . bt (.’13 | Z)pdata<z) target
(o) = [RIS |)

2.3 Extending to SDE

2.3.1 Tools

Fokker-Planck equation Let P; be a probability path and consider an SDE
Xo ~ Puis, dX; = ug(Xy)dt + o dW,.

Then X, has a distribution path of P; characterised by its PDF p, if and only if

2
%pt(x) = —div(pyus)(x) + %Apt(m),‘v;v eR%te [0, 1],

where A denotes the Laplacian operator Aw(x) = Zle 8;;’35:”) = div(Vw)(x).

Score function Term V, logp(z) is generally called score function. Thus, we have V, logp(x | z) as the
conditional score function and V, log p:(x) marginal score function in our context.

2.3.2 Main results

Now we have known how to construct a vector field to convert P t0 Pgata via ODE. Alternatively, we can
also do this conversion via an SDE:

2
Xo ~ Py, dX = (uiarget(m) + %Vx logpt(:r)) dt + oy dW,)
— X~ P, te01].

If we replace all marginal entities to conditional ones the conversion still holds.

We know everything in this SDE but the score function V, log p;(x), which can be derived as follows:

9. tgpe) = 222
= Va [pe(@ | 2)pdata(2)dz
pi(z)
— J Vapi(| 2)paata(2)dz (9)
pe(x)
/ Pe(# | 2)Paata(2)
pi()

V. logpi(z | z)dz.

we can see that the marginal score function is also the weighted average of the conditional score function,
with the same weights as those of the vector fields.

Now we prove the main results.

Proof.

0 .
PUT) i (=))
ot
. target UtZ UtQ
= —div(piu, ") () — EAPt(iﬁ) + 7Apt(x)
— o2 o2
= —div(pu"%") (z) — ?t div(Vpy)(z) + ?tApt(ac)
: target Ut2 : 0752
= —div(psu %) () — o div(p:Vlog pt)(z) + ?Apt(a:)
: o2 o2
— _div (pt (u;arget 4 ;V]ogpt)> (l‘) + éApt(x).
Thus, the vector field that can make the conversion is given by u{*®*" + %?V log p;. O
Remark If the probability path is static, i.e. P, = P, we have u,*"®®"" = 0 and this is called Langevin

dynamics. Using Euler-Maruyama’s method, one can sample from a static distribution P.

Gaussian example The conditional gaussian score function V, logp:(z | z) is given by

Valogp(e] 2) = Vs (~ 56 - a0s) (o - i)

= Bz — a2)

3 Deriving loss functions

In this section, we derive the loss functions for the training. We start from the flow model, and then we
extend it to diffusion model, and then we recover the classic denoising diffusion model with other notes.

3.1 Loss for flow model

t t
u, " 8" is the vector field we are interested in which can convert Piui; t0 Pyata. We want to use a parameterised

neural network u{ to approximate it. A straightforward approach is to minimise the £, norm of the two
functions:

Lot = Ernri(0,1),0mp, [[[uf () — w5 (2)|°] | (10)
where U(0, 1) denotes a uniform distribution over 0 and 1.
From Equation 7, we know that

utarget(x) _ /utarget(m | Z)pt(x | Z)pdata(Z) dz.

t t pt(l‘)

However, the target is intractable: 1). the integration is hard to solve, 2). we do not know pgata and p:(z).
Another way around is that we use the following loss

LerMm = Bitd(0,1),0m Py (12,20 Panen LU0 (@) — 0™ (x| 2)]17] . (11)

We claim that Lry = Lopm + C, where C' is a constant.

Proof.
Lint = Eintd(0,1),2m Py (12) 2 Paaca 104 (%) = 1™ (2| 2)|7]
= Etntt(0,1) 0~ Py (2), o~ Paaga | 106 (@)|7 = 2 (2) "™ (2 | 2) + [Jug™® " (| 2)]J?
—_—
const.

= Errr(0,1)amp, 167 (@)17] = 2Btrets(0.1) om Py (12) 2 Panea (U2 () 0™ (2 | 2)] + Ch

1
= Eosiomy o, [lul(@)]7] - 2 / / / W (2) T (| 2)py(@ | 2)passa()dadzd + Cy
0

1
arge x z ata z
—Sesionar 1@ =2 [[[@ oo ML 00D gogear 1
0 (x

1
=Eir4(0,1),0~Ps [||uf(z)\|2] — 2/ /uf(z)Tpt(x)u;argCt(x)da;dt + C1 (use Equation 7)
0

= Et14(0,1),2~P; [||Uf(33)\|2] — 24 14(0,1),2~P. (-] 2), 2~ Panta [Utg(x)Tpt(Ji)uzmget(w)] +C4

= K¢ 14(0,1),a~P; [||Uf(l") - Uiarget(x)”ﬂ + O

O
Now we have all the ingredients we have for the training of the target vector field.
Loss for the gaussian example Recall the gaussian example we have
Pi(- | 2) ~ N(auz, B2T), where ag = 0,1 = 1,8 = 1,61 =0,
which has its conditional vector field (as shown in the last section)
w8 (g | 2) = | dy — « Be z—l—&x.
(ele)=\de g)24 5,
We know that o ~ P;(- | z) can be rewritten as Sie + ayz, where e ~ N(0, I), the loss can be written as
Eg 0) = F 9 . Bt Bt 2
CEM () = Eintt(0,1),cnh (0.0) 2~ Pasea | [0 (@22 + Br€) — | dr — i 2= | 2 = Z=(Bre +)|
B B (12)

= Eint1(0,1),e~N(0,1),2~ Paaca [HUG(O%Z + Bie) — (ciez + Bre) IIQ}

If we have oy =t and 8; = 1 — ¢, which gives a; = 1 and @y = —1, the method is called condOT probability
path and the loss is given by

LERCT(0) = Erntt(0,0),exN (0.1) 2 Panca 11782+ (1= 1)) = (2 =)] .

The algorithm obtained is given by Algorithm 0.
Then with 4’ we can apply Euler’s method to sample from Py,, by simulating the ODE.

3.2 Loss for diffusion model

With the trained u?, alternatively we can also sample from Py, by simulating the SDE in Equation
o2
dX; = (u’ + évx log pi()) + oedWi, Xo ~ Pinit,

where o7 is a predefined hyper-parameter.

Algorithm 3 Training algorithm for flow methods

Require: Dataset {2, }Y_,

Initialize model ¢

for:=1,2,...,7T do
Draw a sample z from {z,}Y .
Draw a sample ¢ ~ N (0, I).
Draw a sample ¢ ~ U(0,1).
Compute condOT loss £(6) = [|[u®(tz+ (1 —t)e) — (z—€)||? (or general |[u’ (az + Bre) — (ciz + Bre)||?).
Back propagate to update model parameters 6.

end for

Return 6

But we do not know the score function V, logp:(x)) yet and we need to learn it. The loss we are interested
in is
Lom = Erei(0.1),2~p, [[I57(x) = Vi log pe(2))[P] - (13)

Though it is intractable, following the similar approach as we did for the vector field, we can approve that
it is equivalent to the conditional score loss

LopMm = E¢nt4(0,1),0~ Py (|2),2~ Paata [Hstg(l") — V. logpi(z | 2))\\2]) (14)

where we have Lpv = Lepu + C.

Loss for the gaussian example For the gaussian example, we have the conditional score function
Velogpi(x | 2) = =B % (2 — au2).

The score matching loss is then given by

LEon = Bentt(0.1) .0~ Py (12,2 Panea. L1517 (2) + B7 % (2 — ar2) ||P] . (15)

With = ayz + Bie where € ~ N(0, 1), we further have

€
LEpat = Bentt(0,1).nN (0.1) 2~ Panca ||I57 (002 + Bre) + EHQ : (16)

Since 8 — 0 as t — 1, the loss is numerically unstable, it can be reformed as
LEpat = Etntd(0,1),e~A (0,1, 2~ Paa [Il€6 (22 + Bre) —€*] (17)
where ¢ = —f;s¢ predicts the noise added during the corruption, as people did in Denoising Diffusion

Probabilistic Model (DDPM).
The algorithm for learning the score function is given by Algorithm 0.

Then with both u’ and s?(e?) we can apply Euler-Maruyama’s method to sample from Py, by simulating
the SDE.

3.3 Efficient training for diffusion models

Compared to flow models, diffusion models require both the vector field u? and the score function s? as

opposed to flow models, which seems to double the computational cost. However, there are two main
approaches to tackle this problem:

e Training one single neural network with two distinct outputs, which minimize the extra computation.

e For gaussian probability path, the vector field and the score function can be converted to each other.
Thus, training a neural network for either should be enough.

Algorithm 4 Training algorithm for score functions

Require: Dataset {z,}_,, noise scheduler a; and f;.

Initialize model s? or €’

for:=1,2,...,7T do
Draw a sample z from {z,}Y,.
Draw a sample € ~ N(0, I).
Draw a sample ¢ ~ U(0,1).
Compute score loss £(0) = ||s? (a2 + Bre) + EHQ (or DDPM L(6) = || (csz + Bre) — €]|?).
Back propagate to update model parameters 6.

end for

Return 6

Conversion formula for Gaussian probability path For the gaussian probability path Pi(- | z) ~
N (ayz, BI), using simple algebra we have following conversion formula for both conditional and marginal
between vector fields and score functions.

arge O[5 Oé
W (g | 2) = (azﬁf - m) Vlogpe |)+ o, (18)

ulE (1) = <ZZBt2 - Btﬂt) V. log pi(z) + fo (19)

Then we can just train to learn either s’ or uf only, and then obtain another from it and use both for
sampling /simulating the SDE. If we have s, we can apply arbitrary o; to sample from Pyae. using Euler-
Maruyama’s method via the following SDE:

. . 2 v
aw - [(O‘fﬁ? ~ BB+ “t) sg(x>] dt+ i+ oWy,
on 2 677

4 Comparison to other literatures

Discrete time vs continuous time Diffusion models are firstly developed from a perspective of markov
chain in discrete time, but later people realise that understanding it from an SDE/ODE’s perspective in
continuous time is much simpler and mathematically cleaner. The loss in discrete time is constructed via an
evidence lower bound, which is the lower bound of the loss we are interested in in discrete time but becomes
tight (not a bound any more) in continuous time. But the loss functions in both approach are identical.

Forward process vs probability path Using an inverted time convention, the SDE form of the forward

process is given by . R R
Xo = z,dX; = u°™(X,)dt + o™V W,

which is designed such that for ¢ — oo, X, > N (0,I). This is equivalent to our conditional probability
path P;(- | z) in an inverted time convention. However, this construction is annoying since we need to know
X, | X, in closed form to avoid simulating this SDE during the training stage, which must be an affine
transformation of z. This restrict the choice of our noise schedulers.

So, forward pass is a specific way to construct a probability path.

Time-reversal vs continuity (Fokker-Planck) equation In the original paper, u'*&°* and V log p;(z)
are not constructed by continuity and Fokker-Planck equation but via the time-reversal of the constructed
probability path where Py = Pgata and P; = Pipit, which can be described with the following SDE
rev forw rev (U]tr v) 2 rev rev
dX;® = (—u”™ (X)) + Tth(Xt) + o dWy,

10

rev __ forw
where 0}V = op™.

However, this is an overkill since for generative modelling, we are only interested in the final point X3
disgarding intermediate points.

Flow matching and stochastic interpolants The construction of this work is from a perspective of
flow matching and then extend to its SDE form. Alternatively all the work could be done in the language
of stochastic interpolant, which intends to interpolate between two arbitrary distributions. One should be
clear that using flow matching, the ODE itself is deterministic and all the randomness in the generation is
in sampling o ~ N(0,I) and the generated z; | o is always a point. Using SDE, both sampling x¢ and
generating process are random, yielding more diverse output.

5 Building an image generator

Now we can model the probability for Py.i,. However, for image generation, instead of generating an
arbitrary image, we are more interested in generating an image guided by a caption y. This can be done by
modelling the conditional probability on caption Pyata(: | y)-

Terminology Here in the notes, we denote conditioned on image caption y as guided. For example we call
Piasa(- | y) guided data distribution, u'®8et(- | z) where 2z ~ Py (- | y) the guided conditional vector field
to avoid the use of term condition on y and z at the same time.

Guided generative model We are interested in modelling the guided data distribution Py, (- | y) with
variable y €).

5.1 Guided flow model

By replacing all Pyata with Paata(- | ¥), we can obtain the training target for a flow model for a fixed image
caption y:
0 target
GEFM = Bontd(0,1),0m Py (12), 2 Paaea Cly) L0 (@]) — w5 (2| 2)|17] .

Note here uf(x | y) does not depend on y at all since y is always fixed. Further by expanding the expectation
to y ~), we then have

LM = Eintt(0,1),0m Py (2),2m Panen 1)~y L10h (@ |) — g™ (2 | 2)]17] (20)

where u? : (R%,Y,[0,1]) = R% (z,y,t) — u(x | y) is a neural network.

Further improvements Although Equation 22 is mathematically sound, empirically models trained with
it are not well-fit enough for the guided image generation and stronger guidance is required.

Recall the conversion between the vector field u;*"#**(x) and the score function V, logp;(z) for gaussian

probability path, we have the guided version of the conversion

w8 (x| y) = az + bV, log pi(z | y)

where a = g—z and b = %52 — BBt
Further we have

w2 | y) = ax + bV, log py(x | y)
= ax + bV log pi(z) +bV log pi(y |) — bV, log pe(y)
N————’

uiargct (z) const.

target

=u, 5 (x) + bV, logpe(y | ©) — const.

11

It is observed that all the information from the guidance is in the second term. To enhance the guidance, it
is reasonable to scale it up with w > 1:

@ (@ | y) = u™ () + wbV i log pe(y |)

= ax + bV, log pi(x) + wb(Vy logp(x | y) + Vi logpi(y) — Vi log pe(x))
—————

const.
= (1 - w)(az + bV log pe(x)) + w(ax + bV, logpi(x |)
Uy (2))

= (1 — w)ug™™" (@) + w5 (2 | y).

To model both u{*#* () and u;**#**(z | y) with one single neural network, we can use the following objective
function

L&Epn = Bt 24(0,1),2~Pi(-]2), 2~ Panta (- |y),y~d [||U£0(l‘ | y) — uy 8 (x| 2)||”], replace y = () with probability 7.

(21)

This is can be done with Algorithm below

Algorithm 5 Training algorithm for guided flow method

Require: Dataset {z,}_,

Initialize model u?

fori=1,2,...,7 do
Draw a sample z from {z,}Y¥ | with its label y.
Let y = 0 at probability of 7.
Draw a sample € ~ N (0, I).
Draw a sample ¢ ~ U(0, 1). '
Compute loss |[u’ (a2 + Bie | y) — (dez + Bre)||?).
Back propagate to update model parameters 6.

end for

Return 6

Then we have u;*¢" (z) ~ uf(z | §) and u{*"**" (z | y) ~ uf(x | y). With different w by simulating ODE with
a8t (1 | i) we can obtain better empirical results.

5.2 Guided diffusion model

Additional to the vector field, we are also interested in the guided score function V, log p;(x | y) to sample
from the SDE. This can be done with

L6DM = Bitd(0,1),00 Py (12),2m Pasea (ln)p~y IS5 (@ | 1) — 5778 (@ | 2)17] (22)

where s : (R%, Y, [0,1]) = R, (x,y,t) — s/(x | y) is a neural network.

Further improvement To make label enhancement align with diffusion models, we have

Vi logpi(x [y) = Valogpi(y |) + Vi log pe(x) — Vi log pe(y)
By enhancing the label y we have

~target

5,75 (x| y) = wVlogpi(y | ©) + Vu log py(x)

(1= w)sf™5" (@) + ws™™ (| y).

Then the loss for the score function is given by
ﬁggSM = EtNZ/[(O,l),ZL’NPt(-‘Z),Z’\/Pdata('ly)vy’\’y “|8t9($ | y) - S;arget('r | Z)||2]) replace Yy = w with probablhty .
(23)

12

Inference With uf(z | y),s?(z | y) and a fix w, we have

(x| y) = (1 —w)uf(z | 0) +wuf (x| y)
Sz |y) = (1 —w)si(z | 0) +ws{(z | y).

Then we simulate the SDE

2
- Oy .
dX: = | (z | y) + ést(ﬂc | y)| + oedWy, Xo ~ Pinint

13

	Basics of differential equations
	ODE
	SDE

	Constructing the training target
	Conditional and marginal probability path
	Conditional probability path
	Marginal probability path

	Conditional and marginal vector field
	Tools
	Conditional vector field
	Marginal vector field

	Extending to SDE
	Tools
	Main results

	Deriving loss functions
	Loss for flow model
	Loss for diffusion model
	Efficient training for diffusion models

	Comparison to other literatures
	Building an image generator
	Guided flow model
	Guided diffusion model

