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Machine Learning (ML) "...the development and study of statistical algorithms that
can learn from data and generalize to unseen data...”, from Wikipedia

Data are by nature distributed:
m generated from diverse sources (social media, loT devices...)

m infeasible to be collected together (cost, legal restrictions, different formats...)

Data are also inherently heterogeneous, including:
m Heterogeneity across data partitions.

m Inherent heterogeneity across data of different formats.
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Algorithms need to adapt to the distributed and heterogeneous nature of data.

My work focuses on two aspects:

m Federated learning: Learning from distributed data.

m Vision language models: Learning from data of different formats.
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Problem Setting
But what is FL?

Classification problem

We are interested in a classifier y = f(%;6),0 € ©.

Given a dataset D = {(xn, yn)}\_;, with y = f(x;0) and £(-,-), we aim to solve the
optimisation problem

N
1
6* = arg min — L(f(xn: 0), ¥n).
Qgee N;((n ))’n)

Generally solved with stochastic first-order methods.
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Problem Setting
But what is FL?

Federated Learning

The dataset is {Dy}K_;, where Dy = {(xn, ¥n) ,Q’;l,Vk € [K]. Then the optimisation
problem is in the form of

K
1
9*:argmin—g Rk (),
vco K i~ K)

where Ry (0) = Z,’:’il (f(xn; 0), yn).

How to solve this problem efficiently, w.r.t. the distributed data access pattern?
Baseline algorithm: FedAvg.
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Federated Learning Introduction Federated Optimisation

Generalised framework

Algorithm 1 FedOpt!

Require: Initialize parameters §°
for round t in {1,...T} do
for client k in {1,...K} parallel do
0 = ClientOpt(6*~1)
ALD =0 — 01

> Client-side

end for
At) = > Server-side
0t+1 = ServerOpt(At6)

end for

m FedAvg: SGD + + GD.

m FedAdam: SGD + + Adam.

1Reddi et al., “Adaptive federated optimization”.
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FL for Mechanism of Action Prediction

Federated learning for predicting compound mechanism of action based
on image-data from cell painting?

2Ju, Hellander, and Spjuth, “Federated learning for predicting compound mechanism of action based on image-data from cell painting”.
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FL for Mechanism of Action Prediction Background & Motivation

Questions of interest

An image classification problem:
m Fluorescence image X: H x W X #channels.
m MoA Y: Categorical variable.
m Model: a classifier y = f(X%; 6).

In pharmaceutical industry, collaborative ML without sharing data is necessary. FL is
the option!

In the context of MoA prediction, we are interested in
m the effectiveness of FL.

m how data heterogeneity affects the performance.
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FL for Mechanism of Action Prediction Background & Motivation

Scenarios

We simulate three scenarios, Uniform, Unbalanced (in sizes), and Non-IID
(specialisation in certain MoAs).
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FL for Mechanism of Action Prediction Empirical results

CL~FL > LL
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This encourages collaboration across pharm entities using FL, instead of training local

models.
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FL for Mechanism of Action Prediction Empirical results

The more participants, the better performance

Uniform Scenario

Unbalanced Scenario
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This encourages existing participants to keep engaging in FL throughout the life cycle
of a model.
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FL for Mechanism of Action Prediction Empirical results
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We compare the performance of the federated models with the specialised client

included and excluded.
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S0 =
Specialised participant brings benefits
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Including the specialised client in federated learning
m significantly improves the prediction accuracy for the specialised MoA.

m slightly improves the average prediction accuracy for all MoAs.

This encourages both specialised and general clients to join federated learning.
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FL for Mechanism of Action Prediction Conclusions

We conclude that

m Federated learning does bring benefits for MoA prediction.
m Our studies provide motivations for different (potential) participants.

m Theoretical studies for data heterogeneity are too pessimistic in the context of
MoA prediction.
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Accelerate Fair Federated Learning

Accelerating fair federated learning:
Adaptive federated adam?

3Ju, Zhang, et al., “Accelerating Fair Federated Learning: Adaptive Federated Adam”.
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Accelerate Fair Federated Learning Fairness Problem in FL

Fairness problem?

If clients own their own local test sets (instead of a global test set):

MNIST: Test Accuracy
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Fairness problem: the discrepancy in model performance across clients in FL.
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Accelerate Fair Federated Learning Current Approach and Limitations
Q-Fair FL

Standard FL
K
6* = argmin Z Rk (6)
0 k=1
Q-Fair FL
K
* . 1
0* = arg@mln Z RIT(0)

k=1

where g > 0 is a hyperparameter. A commonly used approach in resource allocation,
with g-fairness guarantee.
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Accelerate Fair Federated Learning Current Approach and Limitations

The update rule and the gradient are given by:

K
6t+1 — et + Nt - ve Z RZ+1(9t)
k=1

K K
Vo> RITHOY) =(q+1) > R{(0) VR(0")
k=1 k=1

Diminishing gradient scales require adaptive n; to make progress!

Tian* proposed an adaptive method, which is
m Effective
m But slow (2-5 times slower compared to FedAvg)

® And not compatible with FedOpt.

4Li et al., “Fair resource allocation in federated learning”.
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Accelerate Fair Federated Learning Current Approach and Limitations

We want FL to be both fair and fast.

Problems include:

m The diminishing gradient scales
m Reformulation is required.
m Poor use of FedOpt.
m Study of the server-side optimiser for better convergence.
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Accelerate Fair Federated Learning Main approach

We propose a new formulation

K «@ . t
b argmin St (0)- Rl
0 > k=1 I7(t)

where I,(t) = Rk(0%)/Rk(0°) and o > 0 is similar to q in Q-fair FL.

Our formulation has two properties:

m Shares the same stationary points with Q-fair FL, thus with the identical fairness

guarantee.
m Gets rid of the problem of diminishing gradient scales, thus compatible with
FedOpt.
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Accelerate Fair Federated Learning

Main approach

To further accelerate the optimisation, we study Adam in heterogeneous FL.

Centralized Unbiased gradient Parameter
Training estimation update
Loss of Adam 3
Convergence <
FL with IID  Accumulated Parameter
data SGD updates : update
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Introduced \ > <
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Main approach
Our method

Tackling the problem of FedAdam, we propose our method, Adaptive Federated Adam:

Algorithm 2 AdaFedAdam

Require: Initialize parameters 6°
for round t in {1,...T} do
for client k in {1,...K} parallel do
0; = ClientOpt(6t~1) > Client-side
ALQ = 0f — gt-1
ALO =nk - Ul st. ||UL2 = |[VoRk(6")]|2 (step size x direction)
end for
n', B, 85 = Aggre. hyperpara.({n;) : 0 < k < K} > Server-side
A0 = Aggre. direction({U} : 0 < k < K})
0! .= Adam(A'; ¢, BE, 35)
end for
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Accelerate Fair Federated Learni

Empirical results

Empirical results: convergence and fairness
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Accelerate Fair Federated Learning Empirical results

Empirical results: the Pareto front

How does the additional hyper-parameter « affect the performance?

AdaFedAdam: Average of test error Pareto Front of the Synthetic Setup
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Summary
Key Properties

Our approach ensures following properties:
m Fairness guarantee: Identical to Q-fair FL.
m Improved convergence rate.
m Fine-tuning free: Adaptivity of hyper-parameters.

m Others: allowance for resource heterogeneity, robustness, compatibility with
arbitrary local solvers, etc.
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Asymmetric Adaptation for Pre-trained Vision Language Models

Exploiting the asymmetric uncertainty structure of pre-trained
vision-language models on the unit hypersphere®

5Ju, Andersson, et al., “Exploiting the Asymmetric Uncertainty Structure of Pre-trained VLMs on the Unit Hypersphere”.
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Asymmetric Adaptation for Pre-trained Vision Language Models Introduction

What is pre-trained VLMs?

"VLMs learn to map relationships between textual and visual data, in which image

and text embeddings reside in a joint vector space.”

Contrastive Language Image Pre-training (CLIP)®
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6 . . PET—
Radford et al., “Learning transferable visual models from natural language supervision”.
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Asymmetric Adaptation for Pre-trained Vision Language Models Main approach

Rethinking Building VLMs

m CLIP: "Image—text is an one-to-one mapping’”.

m ProbVLM’: "Image—text is a (symmetric) many-to-many mapping”.

m AsymVLM: "Image—text is a many-to-many mapping with an asymmetric
structure.”

CLIP ProbVLM AsymVLM

—+  I-to-1
1-to-many X . infinite dogs in real life
the dog in real life

text encoder, image encoder

object
—~— 4

images of the dog

text

7Upadhyay et al., "Probvim: Probabilistic adapter for frozen vison-language models”.
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Main approach
Building the method

m Text encoder (text — embedding): one-to-many, modelled by probabilistic
embeddings.

m Image encoder (image — embedding): one-to-one, modelled by deterministic
embedding.

Additionally, we need to utlize the pre-trained models (CLIP, BLIP, SigLIP, etc), which
has deterministic embeddings on S91:

m The method should be post-hoc.

m Probabilistic embeddings should be modelled by directional distributions.
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Main approach
Deriving the Loss

Formally, the embedding of any text t € 7 is modeled by a random variable z 7,
z" ~ P((t)) where 0(t) = g o fr(t),

g1 denote the adaptor and 7 denote the pre-trained text encoder.

The embedding of any image i € T is given by z/ = f(i), where f; denotes the
pre-trained image encoder.

We choose von Mises Fisher distribution (vMF) and Power Spherical distribution (PS)
for probabilistic embeddings.
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Asymmetric Adaptation for Pre-trained Vision Language Models Main approach

Deriving the Loss

We want to maximize p(z/(i) | §(t)) if t and i match, and minimize it if they do not:

Frozen ALY

Image 23

Encoder P(up, £p)
(p1,41) | |L1g|La2 |Lyg [Ly,...|Lis
(pa2,.2) | |L2g |Loga |Lags [Lo...|Los

Frozen Text

—> Text ——> K L3 | L2 |Las |Ls...|L [
@ photo of a dog s | Adaptor || (#3:53) | |Lax | Lz [Ls [Ls.. | La — Ly =Inp(z | up, k)

L.aL. 2L..g|L... L. 5

(uB,6B)| |Lp1|Lp2|Lps L, . |Lpp

To maximize the diagonals and minimize the off-diagonals, InfoNCE loss is applied.
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Asymmetric Adaptation for Pre-trained Vision Language Models Main approach

Discussion

Unified objectives:

B
6 = arg min — In exp (70(n, n))

1
23e) 2B pt Zgzl exp (7 Ind(n, m))
exp (76(n, n))
Zi:l exp (76(m, n))

Denoting CosSim(r,s) = u(t,) " z., for any r,s € [B] we have,

In

for CLIP: (SCL”D(I‘,S) = CosSim(r,s),
for AsymVLMyme: dumre(r, s) = r(t,) - CosSim(r,s) + Fg(r(t:)),
for AsymVLMps: dps(r,s) = x(t,)In(1+ CosSim(r,s) + In Cy(r(t,)).

Li Ju (TDB) Half-time Seminar August 16, 2025 32/38



age Models Empirical results

Empirical results: Uncertainty evaluation

Li Ju

Recall@ 1

Recall ~ Uncertainty: MS-COCO

Tmage-to-Text

Recall ~ Uncertainty: CC-200k

Tmage-to-Text

06
084
074 05
064 s
g
% 04
054 it
4
044 03
034
02+
T T T T T T T T
0 2 4 6 8 0 2 4 6 8
Text-to-Image Text-to-Image
06 064
05
054
® 047
044 =
—e— PFE* 3 034 PFE*
03 —e— POME++* ~ —o— PCME++*
—e— ProbVLM 029 —o— ProbVLM
024 —e— AsymVLMg o1 4 o AsmVIM
—o— AsymVLMps —o— AsymVLMps
0.1% T T T T 00 T T T T
0 2 4 6 8 0 2 4 6 8

Uncertainty Levels

Half-time Seminar

Uncertainty Levels

August 16, 2025

33/38



Asymmetric Adaptation for Pre-trained Vision Language Models Empirical results

Empirical results: ablation study

Image-to-Text Text-to-Image Average Recall
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m Asymmetric structure is essential for uncertainty estimates.

m The choice of hyper-spherical (directional) distribution greatly improves the
cross-modal retrieval performance.
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Summary
Key Properties

Our method has following properties:

m Better cross-modal retrieval performance.

m Retrieval with uncertainty (estimated from likelihood).
m Robust fine-tuning.
m

Robust zero-shot classification (know unknown).
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Future Work

Ongoing works:
m Is logit adjustment a free lunch for heterogeneous federated learning?

m Federated heterogenous rank adaptation for pre-trained large models
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m Ju L, Hellander A, Spjuth O. Federated learning for predicting compound mechanism of action based on
image-data from cell painting. Artificial Intelligence in the Life Sciences. 2024 Jun 1;5:100098.

m Ju L, Zhang T, Toor S, Hellander A. Accelerating fair federated learning: Adaptive federated adam.
IEEE Transactions on Machine Learning in Communications and Networking. 2024 Jul 4.
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2025 May 16.

Other works:
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of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion 2021 Dec 6
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Thank you for listening!

Questions?
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