Li Ju

+46 0762733465 | li-ju666@outlook.com | https://li-ju666.com

Education

Uppsala University	Uppsala, Sweden
Ph.D. in Scientific Computing	09.2021 – 09.2026 (Expected)
Uppsala University	Uppsala, Sweden
M.Sc. in Computational Science	09.2019 – 08.2021
University of Science and Technology of China	Hefei, China
M.Sc. in Chemometrics (Honour)	09.2016 – 06.2019
University of Science and Technology of China	Hefei, China
B.Sc. in Chemistry	09.2012 – 06.2016

Work Experience

Doctoral researcher

Scientific Machine Learning Laboratory

- Analysed and developed algorithms for learning from distributed and heterogeneous data in both theoretical and applicative aspects.
- Collaborated on research in hierarchical information management systems, and attacks and defences in distributed machine learning.
- Taught courses Data Engineering and Cloud Computing, and supervised master students on two course projects on vision language models.

Master thesis student

Integrative Scalable Computing Laboratory

• Proposed and implemented a proactive autoscaler for Kubernetes, reducing the average response time for heterogeneous edge computing systems by up to 15%.

Junior data scientist (Part-time)

Scaleout Systems AB

• Contributed to the PyTorch support for FEDn, an open source framework for industry-grade federated learning, and developed a few example applications.

Skills & Tools

Languages: Python, C/C++, Haskell, Erlang, Lisp (Racket).

Modelling: Distributed machine learning, probabilistic machine learning, Bayesian inference, self-supervised learning, vision language models, uncertainty quantification.

Frameworks: PyTorch, JAX, pthread, OpenMP, MPI, CUDA.

Tools: Docker, Apptainer, Kubernetes, OpenStack, LaTeX, SQL.

MAIN PROJECT EXPERIENCE

Accelerating fair federated learning

- Theoretically analysed the suboptimal convergence of the first-order optimisation methods on existing fairness-aware federated learning formulation, particularly under heterogeneous data distributions.
- Reformulated fairness-aware federated learning as a dynamic multi-objective optimization problem. ensuring theoretically improved convergence while maintaining fairness constraints.
- Proposed AdaFedAdam, introducing adaptive hyperparameter tuning and normalized updates to accelerate convergence and reduce fairness bias, and provided theoretical guarantees for the better convergence.

02.2021 - 08.2021

06.2020 - 03.2021Uppsala, Sweden

09.2021 - Present

Uppsala, Sweden

Uppsala. Sweden

• Empirically validated our method on standard benchmarks for its Pareto optimality and robustness in different scenarios.

Analysis of logit adjustment in federated learning

- Investigated logit adjustment, a method used in heterogeneous federated learning to address label skew problems practically, without theoretical justification for its effectiveness nor consistency.
- Developed a novel theoretical framework to analyse logit adjustment in federated learning, moving beyond traditional optimisation-based perspectives.
- Examined how logit adjustment alters local objectives and impacts consistency with the Bayes optimal classifier, and identified a trade-off between improved convergence and suboptimal asymptotic predictive performance when applying logit adjustment.
- Provided practical guidelines to balance the application of logit adjustment in federated learning, depending on system constraints and desired model optimality from the theoretical analysis.

Uncertainty quantification of vision language models

- Addressed the limitations of existing post-hoc uncertainty quantification methods for pre-trained vision-language models.
- Proposed and validated a hypothesis regarding the asymmetry in the structure of uncertainty between vision and language modalities through rigorous experimentation.
- Developed a novel framework to model uncertainty in spherical space, systematically evaluating it using dropout and Bayesian neural network implementations.
- Demonstrated the advantages of vision-language models with quantified uncertainty across various downstream tasks, including zero-shot classification and image retrieval.

Selected Publications

- Ju, L., Zhang, T., Toor, S., & Hellander, A. (2024). Accelerating fair federated learning: Adaptive federated adam. IEEE Transactions on Machine Learning in Communications and Networking.
- Ju, L., Hellander, A., & Spjuth, O. (2024). Federated learning for predicting compound mechanism of action based on image-data from cell painting. Artificial Intelligence in the Life Sciences.
- Ju, L., Singh, P., & Toor, S. (2021). Proactive autoscaling for edge computing systems with kubernetes. Proceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion.
- Ju, L., Lyu, A., Hao, H., Shen, W., & Cui, H. (2019). Deep learning-assisted three-dimensional fluorescence difference spectroscopy for identification and semiquantification of illicit drugs in biofluids. Analytical chemistry.

Remark

- Achieved 2nd place in the Huawei Sweden Hackathon 2024, competing against 30+ teams from across Europe, in solving the localisation problem using channel charting in wireless communication.
- Serving as the president of the Society for Industrial and Applied Mathematics (SIAM) Uppsala University Chapter since 2024.