
Orthogonality in Neural Networks
Weights and Gradients

Li Ju

Division of Scientific Computing
Department of Information Technology

Uppsala University

September 25, 2025

Li Ju (TDB) Scaleout Edge September 25, 2025 1 / 18



Weights

Orthogonality in Weights

Li Ju (TDB) Scaleout Edge September 25, 2025 2 / 18



Weights Motivation

The Problem

In neural networks, we typically work with unconstrained weight matrices, ignoring
properties like orthogonality. However, this can lead to issues:

Convolutional filters: highly correlated and redundant.

Linear weights: long tailed spectrum.

Signals and gradients: amplified or diminished as they pass through networks.

The Solution: Orthogonality

Enforcing orthogonality in weight matrices can mitigate these problems.

Li Ju (TDB) Scaleout Edge September 25, 2025 3 / 18



Weights Motivation

Advantages of Orthogonal Weights

Gradient Stability:
Orthogonal layers are norm-preserving, which prevents gradients/signals from
exploding or vanishing..

Signal Preservation:
In Recurrent Neural Networks (RNNs), preserving the signal norm is critical for
learning long-term dependencies.

Reduced Redundancy:
Promotes diverse and non-correlated features in convolutional layers.

Li Ju (TDB) Scaleout Edge September 25, 2025 4 / 18



Weights Motivation

Three Main Approaches

1 Regularization
Add a penalty term to the loss function to encourage orthogonality.

2 Optimization on Manifolds
Treat the set of orthogonal matrices as a manifold and perform constrained
optimization.

3 Parameterization
Orthogonality by construction, using specific parameterizations that ensure
orthogonality.

This talk is intended as a brief survey of these methods, giving you a collection of
pointers for these techniques to explore further if you are interested.

Li Ju (TDB) Scaleout Edge September 25, 2025 5 / 18



Weights Regularization

Regularization

We can add a regularizer to the main loss function to encourage the weight matrix
W ∈ Rm×n to be orthogonal.

Soft Orthogonality (SO) Regularizer

SO(W ) := λ∥In −W⊤W ∥F

Double-Sided Orthogonality (DSO) Regularizer

DSO(W ) := λ
(
∥In −W⊤W ∥F + ∥Im −WW⊤∥F

)

This approach is simple to implement and often serves as a direct replacement for
ℓ2 regularization.

Li Ju (TDB) Scaleout Edge September 25, 2025 6 / 18



Weights Optimization

Optimization

This approach frames the problem as a constrained optimization task.

argmin
W∈Rm×n

R(W ) s.t. W⊤W = In

The constraint set defines the Stiefel Manifold, Vn(Rm):

Vn(Rm) := {Y ∈ Rm×n : Y⊤Y = In},

with a degree of freedom mn − n(n+1)
2 (n(n − 1)/2 for square matrices).

To solve this, we use methods like Riemannian SGD, which adapts standard gradient
descent to operate on the geometry of the manifold.

Li Ju (TDB) Scaleout Edge September 25, 2025 7 / 18



Weights Optimization

Optimization with Riemannian SGD

Standard gradient steps would move the weights off the manifold. Riemannian SGD
corrects this.

Each iteration involves four key steps:

1 Compute ambient gradient in Euclidean space: ∇AR(W
t).

2 Project it onto the tangent space, to get the Riemannian gradient: ∇TR(W
t).

3 Move along the descent direction constructed from the Riemannian gradient.

4 ”Retract” the resulting point back onto the manifold.

For Stiefel manifolds, the calculation of Riemannian projection, construction of descent
directions and retraction can be analytically performed. For more details, check1.

1
Tagare, “Notes on optimization on stiefel manifolds”.

Li Ju (TDB) Scaleout Edge September 25, 2025 8 / 18



Weights Parameterization

Parameterization

For other approaches, we have y = act(x⊤W + b) where θ = W are the learnable
parameters.

The Core Idea of Parameterization

Instead of learning θ = W directly, we define W as a differentiable function of some
underlying parameters θ:

W = OMC(θ) such that W⊤W = I

where OMC is an Orthogonal Matrix Constructor.

The network layer becomes y = act(x⊤OMC(θ) + b).

We can then learn θ using any standard optimizer (e.g., Adam, SGD), eliminating
the need for manifold methods or regularization terms.

Li Ju (TDB) Scaleout Edge September 25, 2025 9 / 18



Weights Parameterization

Parameterization Methods

Orthogonal matrices can be constructed from simpler building blocks.

Householder Reflections

R = I − 2
vvH

∥v∥2

Any n × n unitary matrix W can be decomposed into a product of n Householder
reflections:

W =
n∏

i=1

Ri where Ri = I − 2
viv

H
i

∥vi∥2

Here, θ = {vi}ni are the learned parameters.

Li Ju (TDB) Scaleout Edge September 25, 2025 10 / 18



Weights Parameterization

Givens Rotations

G (i , j , θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos θ · · · − sin θ · · · 0
...

...
. . .

...
...

0 · · · sin θ · · · cos θ · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


where G (i , j , θ) is an identity matrix with the (i , i), (j , j), (i , j), (j , i) entries replaced.

Any n × n orthogonal matrix W is a product of n(n − 1)/2 Givens rotation matrices:

W =
∏

i ,j∈[n],i<j

G (i , j , θi ,j)

Here, θ = {θi ,j}i ,j∈[n],i<j are the learned parameters.

Li Ju (TDB) Scaleout Edge September 25, 2025 11 / 18



Weights Parameterization

Cayley Transform

An efficient parameterization for the full set of orthogonal matrices:

W = (I + A)−1(I − A)D

Here, A is a skew-symmetric matrix whose n(n−1)
2 upper-triangular entries are the

learned parameters. D is a diagonal matrix of ±1.

Implementation

PyTorch provides a simple way to apply this via
torch.nn.utils.parametrizations.orthogonal.

Li Ju (TDB) Scaleout Edge September 25, 2025 12 / 18



Orthogonality in Gradients

Orthogonality in Gradients

Li Ju (TDB) Scaleout Edge September 25, 2025 13 / 18



Orthogonality in Gradients

Orthogonality in Gradients

Muon, a recent optimizer, has achieved

current training speed records for both NanoGPT and CIFAR-10 speedrunning.

∼ 30% reduced computation cost over AdamW on LLM training.

The Muon Algorithm

1 Compute gradient: Gt = ∇R(Wt).

2 Update momentum: Mt = µMt−1 + Gt .

3 Orthogonalize direction: Ot = NewtonSchulz(Mt).

4 Update parameters: Wt+1 = Wt − ηOt .

Li Ju (TDB) Scaleout Edge September 25, 2025 14 / 18



Orthogonality in Gradients

What is the Orthogonalization Step?

The key step is the Newton-Schulz iteration, which approximates the orthogonal
component of the momentum matrix.

Consider the Singular Value Decomposition (SVD) of the momentum:

Mt = UtΣtV
⊤
t

The Newton-Schulz step computes an orthogonal matrix Ot that approximates:

Ot ≈ UtV
⊤
t

In essence, it takes the update direction Mt and discards its singular values,
keeping only the rotational part.

Li Ju (TDB) Scaleout Edge September 25, 2025 15 / 18



Orthogonality in Gradients

Why Does This Work? Controlling Output Change

The goal is to update weights to decrease the loss, while controlling both input and
output vectors to be ”informatively dense” (i.e. ∥·∥RMS ≈ 1).

Consider a linear layer with weights W and input x :

The change in output is ∆y = ∆Wx , where we want ∥∆y∥RMS ↓.
We can measure this change using the Root-Mean-Square (RMS) norm. The
relevant operator norm is:

∥A∥RMS→RMS = max
∥Av∥RMS

∥v∥RMS
=

√
din
dout

× ∥A∥2.

∥∆y∥RMS ↓ ⇐⇒ ∥∆W ∥RMS→RMS ↓ ⇐⇒ ∥∆W ∥2 ↓

Li Ju (TDB) Scaleout Edge September 25, 2025 16 / 18



Orthogonality in Gradients

Why Does This Work? Controlling Output Change

The Constrained Optimization Problem

Muon implicitly solves: ”Find the update ∆W that maximally decreases the loss for a
fixed-size change in the output.”

min
∆W

⟨R(W ),∆W ⟩ s.t. ∥∆W ∥2 ≤ η

The solution to this problem is ∆W ⋆ ∝ UV⊤, where ∇R(W ) = UΣV⊤. This is
exactly what Muon computes.

Li Ju (TDB) Scaleout Edge September 25, 2025 17 / 18



Questions

Thank you for listening!

Questions?

Li Ju (TDB) Scaleout Edge September 25, 2025 18 / 18


	Weights
	Motivation
	Regularization
	Optimization
	Parameterization

	Orthogonality in Gradients
	Questions

